
Security Review Report
NM-0099 Libre

(Jul 07, 2023)

NM-0099 - LIBRE - SECURITY REVIEW

Contents
1 Executive Summary 2

2 Audited Files 3

3 Summary of Issues 4

4 System Overview 5

5 Risk Rating Methodology 7

6 Issues 8
6.1 [Critical] USDC is permanently locked in the SubscriptionBook . 8
6.2 [Critical] _instantSettlement(...) does not implement fee deduction . 9
6.3 [High] Admin cancellation of an order may lead to an insufficient security token balance in the RedemptionBook 10
6.4 [High] Admin cancellation of the first order in the queue will lead to failure of settling orders 10
6.5 [High] Missing zero check for investorId could be abused to drain tokens . 12
6.6 [High] order.amountPaid is updated with the amount sent to the treasury instead of beneficiary 13
6.7 [Medium] Enabling a module without resetting the registries leads to incorrect behavior of static checks 14
6.8 [Medium] Investors and dealers can add any wallet even if it does not belong to them . 15
6.9 [Medium] Investors are unable to redeem the entire amount . 15
6.10 [Medium] Last operation timestamp in InvestorRegistry can be overridden . 16
6.11 [Medium] The function settleOrders(...) never marks order as done . 16
6.12 [Medium] The last item is never checked due to an incorrect implementation of the function getValueAfterTimestamp(...) . 17
6.13 [Medium] investorBalance[] is not updated when investors add or remove a wallet . 17
6.14 [Medium] The function rebalanceSettlements(...) lacks global state update like the function _partialSettlement(...) . . 18
6.15 [Medium] settledAmount is never reset in _instantSettlement(...) . 18
6.16 [Low] Functions initialize(...) can be frontrun . 19
6.17 [Low] Incorrect definition of INITIAL_RESTRICTED_PERIOD_ALLOWANCE constant variable . 20
6.18 [Low] Malicious contract manager can continue to pass hasAccess after manager role is changed 20
6.19 [Info] Duplicate elements in operationModules[] could cause deleteModule(...) to work incorrectly 21
6.20 [Info] Redundant loop check in the function _editModuleClone(...) . 21
6.21 [Info] Registering the same module again will not produce the desired outcome . 22
6.22 [Info] The total storage variable in IdSorter can be manipulated . 22
6.23 [Info] Typo in string used to derive storage key . 23
6.24 [Info] insertId(...) fails to insert an element equal to the end . 23
6.25 [Best Practice] Duplicated logic between the HoldingsModule and the

BidsAggregationLimitModule . 24
6.26 [Best Practice] Emitting address instead of index of the wallet . 24
6.27 [Best Practice] Improve efficiency of insertId(...) by utilizing a hint for faster position finding 25
6.28 [Best Practice] Including zero check for denominator when performing division . 25
6.29 [Best Practice] Missing event emission . 25
6.30 [Best Practice] Prevent initialization of implementation contracts . 26
6.31 [Best Practice] Redundant investorBalance getter in SecurityToken contract . 26
6.32 [Best Practice] Unnecessary parent before and after token transfer function call . 26
6.33 [Best Practice] Unnecessary setting of IS_INSTRUMENT and FUND_ID in InstrumentRegistry 27
6.34 [Best Practice] Unused storage variables . 27
6.35 [Best Practice] Verify whether the transfer was successful and the token balance after transfer using order amount 27
6.36 [Best Practice] checkCorrectInvestor(...) could receive investorId instead of _orderId . 28
6.37 [Best Practice] updateInvestorLastOperationTimestamp(...) parameter can be investorId 29

7 Documentation Evaluation 29

8 Test Suite Evaluation 30
8.1 Tests Output . 30
8.2 Code Coverage . 31
8.3 Slither . 31

9 About Nethermind 32

1

NM-0099 - LIBRE - SECURITY REVIEW

1 Executive Summary
This document outlines the security review conducted by Nethermind for the Libre protocol. Libre, also known as Libra, is a general-
purpose asset tokenization platform. Its primary purpose is to provide individuals and organizations with access to funds at lower costs
and with lower investment minimums. The platform aims to democratize access to financial assets by leveraging blockchain technology
and smart contracts.

The audited code comprises 4535 lines of Solidity. The Libre team has provided detailed documentation explaining the protocol
summary, the flow of the subscription book and the redemption book, and the interaction between each instrument with registries and rule
engines. The audit was conducted in three separate commits. The initial commit hash is e22cc7, followed by the second commit 6625b3,
and the final review commit is e88db8.

The audit was performed using: (a) manual analysis of the codebase, (b) automated analysis tools, (c) simulation of the smart contracts,
and (d) creation of test cases. Along this document, we report 37 points of attention, where 2 are classified as Critical, 4 are classified
as High, 9 are classified as Medium, 3 are classified as Low, and 19 are classified as Informational or Best Practice. The issues are
summarized in Fig. 1.

This document is organized as follows. Section 2 presents the files in the scope of this audit. Section 3 summarizes the issues.
Section 4 presents the system overview. Section 5 discusses the risk rating methodology adopted for this audit. Section 6 details the
issues. Section 7 discusses the documentation provided by the client for this audit. Section 8 presents the compilation, tests, and
automated tests. Section 9 concludes the document.

High

Medium

LowInfo

Best Practices
35.1%

Info
16.2%

Critical
5.4%
High

10.8%

Medium
24.3%

Low
8.1%

 Severity

(a)

Acknowledged
8.1%

Fixed
91.9%

 Status

(b)

Fig 1: Distribution of issues: Critical (2), High (4), Medium (9), Low (3), Undetermined (0), Informational (6), Best Practices (13).
Distribution of status: Fixed (34), Acknowledged (3), Mitigated (0), Unresolved (0)

Summary of the Audit

Audit Type Security Review
Initial Report June 19, 2023
Response from Client June 30, 2023
Final Report July 7, 2023
Methods Manual Review, Automated Analysis
Repository https://github.com/NethermindEth/libre-platform-contracts/tree/
Commit Hash (Initial Audit) e88db8da563a0acbe3bffa7af911714215759d4c
Documentation Assessment High
Test Suite Assessment Medium

2

https://nethermind.io
https://github.com/NethermindEth/libre-platform-contracts/tree/e22cc74c094985a97a4faf83844c8d51dfb6af12
https://github.com/NethermindEth/libre-platform-contracts/tree/6625b3d253d96de74561c28461a7036ee9bea7d8
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c
https://github.com/NethermindEth/libre-platform-contracts/tree/
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/

NM-0099 - LIBRE - SECURITY REVIEW

2 Audited Files

Contract LoC Comments Ratio Blank Total
1 SecurityToken.sol 105 10 9.5% 23 138
2 IdSorter.sol 106 37 34.9% 11 154
3 RedemptionBook.sol 655 100 15.3% 130 885
4 EternalRegistryStorage.sol 193 9 4.7% 35 237
5 DealerRulesEngine.sol 162 14 8.6% 29 205
6 SystemDeployment.sol 58 13 22.4% 7 78
7 PermissionedContract.sol 14 16 114.3% 5 35
8 RulesEngine.sol 253 13 5.1% 43 309
9 OperationModule.sol 20 9 45.0% 3 32
10 SubscriptionBook.sol 389 41 10.5% 102 532
11 registries/DealerRegistry.sol 33 7 21.2% 13 53
12 registries/InstrumentRegistry.sol 277 8 2.9% 39 324
13 registries/InvestorRegistry.sol 244 30 12.3% 40 314
14 registries/BaseRegistry.sol 127 83 65.4% 30 240
15 registries/FundRegistry.sol 20 6 30.0% 6 32
16 registries/RoleRegistry.sol 75 4 5.3% 12 91
17 registries/JurisdictionRegistry.sol 23 12 52.2% 8 43
18 registries/BaseUserRegistry.sol 52 9 17.3% 16 77
19 lib/TimeOperations.sol 86 33 38.4% 9 128
20 lib/MonotonicQueue.sol 113 68 60.2% 17 198
21 lib/BitMask.sol 23 41 178.3% 6 70
22 modules/general/HoldingsModule.sol 252 8 3.2% 37 297
23 modules/subscriptions/BidsAggregationLimitModule.sol 117 5 4.3% 13 135
24 modules/subscriptions/SubscriptionSizeModule.sol 158 4 2.5% 26 188
25 modules/allowlist/AllowlistModuleDealerExample1.sol 119 15 12.6% 20 154
26 modules/allowlist/AllowlistModuleLibreExample1.sol 149 19 12.8% 24 192
27 modules/allowlist/AllowlistModuleInstrumentExample1.sol 57 6 10.5% 14 77
28 interfaces/IRedemptionBook.sol 40 39 97.5% 6 85
29 interfaces/IDealerRegistry.sol 13 35 269.2% 7 55
30 interfaces/ISubscriptionBook.sol 34 28 82.4% 5 67
31 interfaces/ISecurityToken.sol 21 42 200.0% 8 71
32 interfaces/IEternalRegistryStorage.sol 29 118 406.9% 16 163
33 interfaces/IRoleRegistry.sol 17 70 411.8% 12 99
34 interfaces/IInvestorRegistry.sol 47 134 285.1% 25 206
35 interfaces/IFundRegistry.sol 8 19 237.5% 4 31
36 interfaces/IOrderPipeline.sol 33 96 290.9% 19 148
37 interfaces/IUserRegistry.sol 10 32 320.0% 7 49
38 interfaces/IDealerRulesEngine.sol 29 77 265.5% 12 118
39 interfaces/IInstrumentRegistry.sol 43 74 172.1% 11 128
40 interfaces/IRulesEngine.sol 74 51 68.9% 8 133
41 interfaces/operations/IAdvisedLockBidCheck.sol 6 9 150.0% 1 16
42 interfaces/operations/ILockRedemptionCheck.sol 4 8 200.0% 1 13
43 interfaces/operations/ICreateRedemptionCheck.sol 10 11 110.0% 1 22
44 interfaces/operations/IAdvisedCreateBidCheck.sol 11 12 109.1% 1 24
45 interfaces/operations/IBidConfirmationCheck.sol 6 10 166.7% 1 17
46 interfaces/operations/IAdvisedRedemptionConfirmationCheck.sol 10 11 110.0% 1 22
47 interfaces/operations/IAdvisedBidCancelationCheck.sol 6 9 150.0% 1 16
48 interfaces/operations/IForcedRedemptionCheck.sol 6 9 150.0% 1 16
49 interfaces/operations/IOptionalFlagsInstrumentCheck.sol 8 23 287.5% 3 34
50 interfaces/operations/IOptionalFlagsDealerCheck.sol 10 25 250.0% 3 38
51 interfaces/operations/ISMFillCheck.sol 6 9 150.0% 1 16
52 interfaces/operations/IAdvisedRedemptionCancelationCheck.sol 6 9 150.0% 1 16
53 interfaces/operations/IForcedTransferCheck.sol 6 10 166.7% 1 17
54 interfaces/operations/ISendCheck.sol 6 10 166.7% 1 17
55 interfaces/operations/IReceiveCheck.sol 6 10 166.7% 1 17
56 interfaces/operations/ILibreFlagsCheck.sol 10 22 220.0% 3 35

3

https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/SecurityToken.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/IdSorter.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/RedemptionBook.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/EternalRegistryStorage.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/DealerRulesEngine.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/SystemDeployment.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/PermissionedContract.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/RulesEngine.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/OperationModule.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/SubscriptionBook.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/registries/DealerRegistry.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/registries/InstrumentRegistry.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/registries/InvestorRegistry.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/registries/BaseRegistry.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/registries/FundRegistry.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/registries/RoleRegistry.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/registries/JurisdictionRegistry.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/registries/BaseUserRegistry.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/lib/TimeOperations.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/lib/MonotonicQueue.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/lib/BitMask.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/modules/general/HoldingsModule.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/modules/subscriptions/BidsAggregationLimitModule.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/modules/subscriptions/SubscriptionSizeModule.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/modules/allowlist/AllowlistModuleDealerExample1.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/modules/allowlist/AllowlistModuleLibreExample1.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/modules/allowlist/AllowlistModuleInstrumentExample1.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/IRedemptionBook.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/IDealerRegistry.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/ISubscriptionBook.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/ISecurityToken.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/IEternalRegistryStorage.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/IRoleRegistry.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/IInvestorRegistry.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/IFundRegistry.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/IOrderPipeline.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/IUserRegistry.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/IDealerRulesEngine.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/IInstrumentRegistry.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/IRulesEngine.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/operations/IAdvisedLockBidCheck.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/operations/ILockRedemptionCheck.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/operations/ICreateRedemptionCheck.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/operations/IAdvisedCreateBidCheck.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/operations/IBidConfirmationCheck.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/operations/IAdvisedRedemptionConfirmationCheck.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/operations/IAdvisedBidCancelationCheck.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/operations/IForcedRedemptionCheck.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/operations/IOptionalFlagsInstrumentCheck.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/operations/IOptionalFlagsDealerCheck.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/operations/ISMFillCheck.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/operations/IAdvisedRedemptionCancelationCheck.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/operations/IForcedTransferCheck.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/operations/ISendCheck.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/operations/IReceiveCheck.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/operations/ILibreFlagsCheck.sol

NM-0099 - LIBRE - SECURITY REVIEW

Contract LoC Comments Ratio Blank Total
57 interfaces/operations/IAdvisedLockRedemptionCheck.sol 6 9 150.0% 1 16
58 interfaces/operations/ISettleBidsCheck.sol 12 13 108.3% 1 26
59 interfaces/operations/ISettleRedemptionsCheck.sol 10 11 110.0% 1 22
60 interfaces/operations/ITransferCheck.sol 6 10 166.7% 1 17
61 interfaces/operations/ISMOrderCheck.sol 6 10 166.7% 1 17
62 interfaces/operations/IAdvisedBidConfirmationCheck.sol 10 11 110.0% 1 22
63 interfaces/operations/ICreateBidCheck.sol 10 11 110.0% 1 22
64 interfaces/operations/ISMTradeCheck.sol 6 11 183.3% 1 18
65 interfaces/operations/IAdvisedCreateRedemptionCheck.sol 11 12 109.1% 1 24
66 interfaces/operations/IRedemptionConfirmationCheck.sol 9 10 111.1% 1 20
67 interfaces/operations/ILockBidCheck.sol 4 8 200.0% 1 13
68 interfaces/operations/IOperationModule.sol 50 14 28.0% 4 68

Total 4535 1762 38.9% 895 7192

3 Summary of Issues

Finding Severity Update
1 USDC is permanently locked in the SubscriptionBook Critical Fixed
2 _instantSettlement(...) does not implement fee deduction Critical Fixed
3 Admin cancellation of an order may lead to an insufficient security token balance in the

RedemptionBook
High Fixed

4 Admin cancellation of first order in queue will lead to failing of settling orders High Fixed
5 Missing zero check for investorId could be abused to drain tokens High Fixed
6 order.amountPaid is updated with the amount sent to the treasury instead of beneficiary High Fixed
7 Enabling a module without resetting the registries leads to incorrect behaviour of static

checks
Medium Fixed

8 Investors and dealers can add any wallet even if it does not belong to them Medium Fixed
9 Investors are unable to redeem the entire amount Medium Fixed
10 Last operation timestamp in InvestorRegistry can be overridden Medium Fixed
11 The function settleOrders(...) never marks order as done Medium Fixed
12 The last item is never checked due to an incorrect implementation of the function

getValueAfterTimestamp(...)
Medium Fixed

13 investorBalance[] is not updated when investors add or remove a wallet Medium Fixed
14 rebalanceSettlements(...) lacks global state update like _partialSettlement(...) Medium Fixed
15 settledAmount is never reset in _instantSettlement(...) Medium Fixed
16 Functions initialize(...) can be frontrun Low Fixed
17 Incorrect definition of INITIAL_RESTRICTED_PERIOD_ALLOWANCE constant variable Low Fixed
18 Malicious contract manager can continue to pass hasAccess after manager role is

changed
Low Fixed

19 Duplicate elements in operationModules[] could cause deleteModule(...) to work in-
correctly

Info Fixed

20 Redundant loop check in the function _editModuleClone(...) Info Fixed
21 Registering the same module again will not produce the desired outcome Info Fixed
22 The total storage variable in IdSorter can be manipulated Info Fixed
23 Typo in string used to derive storage key Info Fixed
24 insertId(...) fails to insert an element equal to the end Info Fixed
25 Duplicated logic between HoldingsModule and BidsAggregationLimitModule Best Practices Acknowledged
26 Emitting address instead of index of the wallet Best Practices Acknowledged
27 Improve efficiency of insertId(...) by utilizing a hint for faster position finding Best Practices Fixed
28 Including zero check for denominator when performing division Best Practices Fixed
29 Missing event emission Best Practices Fixed
30 Prevent initialization of implementation contracts Best Practices Fixed
31 Redundant investorBalance getter in SecurityToken contract Best Practices Fixed
32 Unnecessary parent before and after token transfer function call Best Practices Acknowledged
33 Unnecessary setting of IS_INSTRUMENT and FUND_ID in InstrumentRegistry Best Practices Fixed
34 Unused storage variables Best Practices Fixed
35 Verify whether the transfer was successful and the token balance after transfer using order

amount
Best Practices Fixed

36 checkCorrectInvestor(...) could receive investorId instead of _orderId Best Practices Fixed
37 updateInvestorLastOperationTimestamp(...) parameter can be investorId Best Practices Fixed

4

https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/operations/IAdvisedLockRedemptionCheck.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/operations/ISettleBidsCheck.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/operations/ISettleRedemptionsCheck.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/operations/ITransferCheck.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/operations/ISMOrderCheck.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/operations/IAdvisedBidConfirmationCheck.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/operations/ICreateBidCheck.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/operations/ISMTradeCheck.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/operations/IAdvisedCreateRedemptionCheck.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/operations/IRedemptionConfirmationCheck.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/operations/ILockBidCheck.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/interfaces/operations/IOperationModule.sol

NM-0099 - LIBRE - SECURITY REVIEW

4 System Overview
The main contracts of the system included:

a) SystemDeployment

b) SubscriptionBook

c) RedemptionBook

d) SecurityToken

e) RulesEngine

f) InvestorRegistry

g) DealerRegistry

h) FundRegistry

i) JurisdictionRegistry

j) InstrumentRegistry

k) RoleRegistry

l) Modules

Fig. 2 presents the interaction diagram of contracts.

Interaction

RulesEngine

Access Validation

InvestorRegistry DealerRegistry

FundRegistry JurisdictionRegistry

Access Validation

RoleRegistry

DeployInstrumentRegistry

Registries

DeploySystemDeployment

Instruments

Modules

SubscriptionBook

RedemptionBook

SecurityToken

Fig. 2: Interaction Diagram of Contracts

The SystemDeployment contract is responsible for deploying all registries and initializing them. The deploying registries include Rol-
eRegistry, InvestorRegistry, DealerRegistry, FundRegistry, JurisdictionRegistry and InstrumentRegistry .

The SubscriptionBook contract is responsible for implementing the logic and functionality related to the subscription process within the
Libre platform. It manages the order book for subscriptions and handles the creation, confirmation, locking, and settlement of subscription
orders.

The RedemptionBook contract is responsible for implementing the logic and functionality related to the redemption process within the
Libre platform. It manages the order book for redemptions and handles the creation, confirmation, locking, and settlement of redemption
orders.

The SecurityToken contract is responsible for managing and ensuring compliance with the rules associated with an asset by utilizing the
RulesEngine . Each security token represents an asset on the platform. Also, it can track an investor’s overall balance across multiple
wallets.

The RulesEngine contract is responsible for handling and validating compliance rules associated with various participants, assets, and
functionalities within the platform.

5

NM-0099 - LIBRE - SECURITY REVIEW

The InvestorRegistry contract is designed to store and manage the information of all investors participating in the platform. The contract
may interact with other contracts and components within the platform to validate investor information and ensure compliance.

The DealerRegistry contract, similarly to InvestorRegistry, is designed to store and manage the information of all dealers or entities
representing and onboarding investors to the platform.

The FundRegistry contract is responsible for storing and managing information related to funds or entities that issue assets on the
platform. The contract would ensure that the necessary compliance rules are applied to each fund and that the associated assets and
instruments are properly configured.

The JurisdictionRegistry contract is designed to store and manage information associated with jurisdictions and compliance rules specific
to those jurisdictions.

The InstrumentRegistry contract is responsible for registering and managing instruments. Instruments represent various financial assets
or investment products issued and traded on the platform. Each instrument can have multiple components, such as a security token, a
rules engine, a subscription book, and a redemption book.

The RoleRegistry contract is responsible for managing and tracking roles associated with different participants in the system. It is
designed to handle access control and authorization within the platform by assigning and revoking roles to different addresses or entities.
The contract maintains a hierarchical tree structure of roles, where each role can have parent roles and grant or revoke sub-roles.

The Modules contracts are components or plugins that can be added to different contracts within the Libre platform to extend functionalities
or implement specific business logic. Modules can be registered or attached to the respective contracts through the RulesEngine to enable
their functionality.

6

NM-0099 - LIBRE - SECURITY REVIEW

5 Risk Rating Methodology
The risk rating methodology used by Nethermind follows the principles established by the OWASP Foundation. The severity of each finding
is determined by two factors: Likelihood and Impact.

Likelihood measures how likely an attacker will uncover and exploit the finding. This factor will be one of the following values:

a) High: The issue is trivial to exploit and has no specific conditions that need to be met;

b) Medium: The issue is moderately complex and may have some conditions that need to be met;

c) Low: The issue is very complex and requires very specific conditions to be met.

When defining the likelihood of a finding, other factors are also considered. These can include but are not limited to Motive, opportunity,
exploit accessibility, ease of discovery, and ease of exploit.

Impact is a measure of the damage that may be caused if an attacker exploits the finding. This factor will be one of the following values:

a) High: The issue can cause significant damage, such as loss of funds or the protocol entering an unrecoverable state;

b) Medium: The issue can cause moderate damage, such as impacts that only affect a small group of users or only a particular part
of the protocol;

c) Low: The issue can cause little to no damage, such as bugs that are easily recoverable or cause unexpected interactions that
cause minor inconveniences.

When defining the impact of a finding, other factors are also considered. These can include but are not limited to Data/state integrity, loss
of availability, financial loss, and reputation damage. After defining the likelihood and impact of an issue, the severity can be determined
according to the table below.

Severity Risk

Impact

High Medium High Critical
Medium Low Medium High
Low Info/Best Practices Low Medium
Undetermined Undetermined Undetermined Undetermined

Low Medium High
Likelihood

To address issues that do not fit a High/Medium/Low severity, Nethermind also uses three more finding severities: Informational, Best
Practices, and Undetermined.

a) Informational findings do not pose any risk to the application, but they carry some information that the audit team intends to pass
to the client formally;

b) Best Practice findings are used when some piece of code does not conform with smart contract development best practices;

c) Undetermined findings are used when we cannot predict the impact or likelihood of the issue.

7

https://nethermind.io
https://owasp.org
https://nethermind.io

NM-0099 - LIBRE - SECURITY REVIEW

6 Issues

6.1 [Critical] USDC is permanently locked in the SubscriptionBook

File(s): SubscriptionBook.sol/L352, SubscriptionBook.sol/L429

Description: The SubscriptionBook allows users to lock their USDC to receive security tokens. However, once the USDC is deposited
into the contract and the orders are settled, it becomes impossible to withdraw these funds from the contract. As a result, the USDC is
locked permanently, with no option for withdrawal. As described below, the code comments on this functionality as a TODO task.

1 function settleOrders(uint256 _lastOrderId, uint256 _percentageToSettle, bytes32 _role) external override {
2 ...
3 uint256 orderId = allOrders[i];
4 Order memory order = orders[orderId];
5

6 uint256 amountSettled = (order.amount * _percentageToSettle) / 10000;
7

8 if (amountSettled > totalToSettle) {
9 amountSettled = totalToSettle;

10 }
11 uint256 amountToIssue = (amountSettled * 10 ** securityToken.decimals()) / navPerShare;
12

13 securityToken.issue(order.beneficiary, amountToIssue);
14 // @audit There is a TODO here to implement the withdraw function
15 // TODO: Add logic for the fund to receive the payment tokens
16

17 totalToSettle -= amountSettled;
18 _partialSettlement(orderId, order.investorId, amountSettled);
19 ...
20 }

Similarly, the logic for the fund should be implemented in _instantSettlement(...), presented below:

1 function _instantSettlement(uint256 _orderId) internal {
2 Order memory order = orders[_orderId];
3

4 uint256 auditedNav = instrumentRegistry.getAuditedNavPerShare(instrumentId);
5 uint256 amountToIssue = (order.amount * 10 ** securityToken.decimals()) / auditedNav;
6 securityToken.issue(order.beneficiary, amountToIssue);
7

8 // @audit The logic for the fund to receive the payment tokens should also be implemented here
9 _partialSettlement(_orderId, order.investorId, order.amount);

10 _decreaseInvestorOrders(order.investorId);
11 ...
12 }

Recommendation(s): Ensure implementing a function for the fund to receive the payment tokens in _instantSettlement(...) and
settleOrders(...), or another withdrawal mechanism.

Status: Fixed

Update from the client: Fixed in e88db8d

8

https://github.com/NethermindEth/libre-platform-contracts/blob/e22cc74c094985a97a4faf83844c8d51dfb6af12/src/SubscriptionBook.sol#L352
https://github.com/NethermindEth/libre-platform-contracts/blob/e22cc74c094985a97a4faf83844c8d51dfb6af12/src/SubscriptionBook.sol#L429
https://github.com/NethermindEth/libre-platform-contracts/commit/e88db8da563a0acbe3bffa7af911714215759d4c

NM-0099 - LIBRE - SECURITY REVIEW

6.2 [Critical] _instantSettlement(...) does not implement fee deduction
File(s): RedemptionBook.sol

Description: _instantSettlement(...) is automatically triggered to calculate the instant settlement of an order when all four phases are
executed in the same transaction. The function is presented below:

1 function _instantSettlement(uint256 _orderId) internal {
2 Order memory order = orders[_orderId];
3

4 // TODO: Type of NAV used to TBD with the client
5 uint256 unauditedNavPerShare = instrumentRegistry.getUnauditedNavPerShare(instrumentId);
6 uint256 amountToPay = order.amount * unauditedNavPerShare / 10 ** usdc.decimals();
7

8 securityToken.burn(order.amount);
9 usdc.transfer(order.beneficiary, amountToPay);

10

11 // TODO: Deduct fee
12

13 // Update storage variables affected by the settlement
14 _partialSettlement(_orderId, order.investorId, 0, order.amount);
15 _decreaseRedeemersOrders(order.investorId);
16 orders[_orderId].confirmed = false; // mark order as done
17

18 removeId(_orderId);
19 }

The function settleOrders(...) implements the same functionality, but it calculates the settlement of a set of orders. However, in
_instantSettlement(...), there is no fee deduction implementation. The same is applied to the function rebalanceSettlements(...).

1 function rebalanceSettlements(uint256 _lastOrderToRebalance, bytes32 _role) external {
2 _checkRoleHasAccess(_role);
3 uint256 auditedNav = instrumentRegistry.getAuditedNavPerShare(instrumentId);
4

5 uint256 decimals = 10 ** securityToken.decimals();
6 ...
7 }

Recommendation(s): Ensure _instantSettlement(...) and rebalanceSettlements(...) implements the same fee deduction process
as implemented in settleOrders(...).

Status: Fixed

Update from the client: Fixed in e88db8d

9

https://github.com/NethermindEth/libre-platform-contracts/blob/e22cc74c094985a97a4faf83844c8d51dfb6af12/src/RedemptionBook.sol#L523
https://github.com/NethermindEth/libre-platform-contracts/commit/e88db8da563a0acbe3bffa7af911714215759d4c

NM-0099 - LIBRE - SECURITY REVIEW

6.3 [High] Admin cancellation of an order may lead to an insufficient security token
balance in the RedemptionBook

File(s): RedemptionBook.sol

Description: In the RedemptionBook contract, the admin can cancel any existing order by calling the function adminCancelOrder(...).
When a locked order is canceled, the corresponding amount of security tokens are transferred back to the beneficiary in the function
_afterCancelOrderCheck(...).

1 function _afterCancelOrderCheck(uint256 _orderId, Order memory _order, uint256 _submitter) internal {
2 // update the investors count
3 _decreaseRedeemersOrders(_order.investorId);
4

5 if (_order.confirmed) {
6 confirmedAmount -= _order.amount;
7 confirmedAmountPerInvestor[_order.investorId] -= _order.amount;
8

9 // If locked update the locked amount
10 //
11 // @audit Not consider _order.amountSettled
12 //
13 if (!_order.available) {
14 amountLocked -= _order.amount;
15 // @audit should be _order.amount - _order.amountSettled instead
16 securityToken.transfer(_order.beneficiary, _order.amount);
17 removeId(_orderId);
18 }
19 }
20

21 // Reduce the aggregated amount of orders received
22 aggregatedAmount -= _order.amount;
23

24 // delete the order
25 delete orders[_orderId];
26 emit OrderCanceled(_orderId, _submitter);
27 }

However, there is a potential issue where an order could be partially settled when the admin attempts to cancel it. However, the
amountSettled is not deducted when sending the securityToken back to the beneficiary. Consequently, a user could receive the total
amount of security tokens while their order has already been partially settled, meaning they have also received USDC previously. Addi-
tionally, since security tokens are burned upon settlement, the contract may have insufficient security tokens available for other users to
cancel or settle their orders.

Recommendation(s): Consider the amountSettled when the admin cancels an order and transfers the security tokens back to the investor.

Status: Fixed

Update from the client: Fixed in e88db8d

6.4 [High] Admin cancellation of the first order in the queue will lead to failure of
settling orders

File(s): SubscriptionBook.sol

Description: Admin has the privilege of canceling orders even after the tokens are locked for a particular order. In that case, the orderId
is removed from the queue. But in a special case, after an order is canceled, the settle order functionality fails.

1 function settleOrders(uint256 _lastOrderId, uint256 _percentageToSettle, bytes32 _role) external override {
2 ...
3 if (_lastOrderId < nextOrderToSettle) {
4 revert IOrderPipelineOrderAlreadySettledInCurrentRound();
5 }
6

7 uint256[] memory allOrders = getIdsOrderFrom(nextOrderToSettle == 0 ? start : nextOrderToSettle, _lastOrderId);
8 ...
9 nextOrderToSettle = idsQueue[_lastOrderId].next;

10 }

Let’s take a scenario where there are five orders(1,2,3,4,5)

10

https://github.com/NethermindEth/libre-platform-contracts/blob/e22cc74c094985a97a4faf83844c8d51dfb6af12/src/RedemptionBook.sol
https://github.com/NethermindEth/libre-platform-contracts/commit/e88db8da563a0acbe3bffa7af911714215759d4c
https://github.com/NethermindEth/libre-platform-contracts/blob/e88db8da563a0acbe3bffa7af911714215759d4c/src/SubscriptionBook.sol

NM-0099 - LIBRE - SECURITY REVIEW

1. Admin first settles orders till 2. Queue is updated and nextOrderToSettle is updated to 3;

2. Later, the admin cancels order 3, which updates the start variable in idSorter contract to 4, and the order queue looks like
(1,2,4,5);

3. Then the admin wants to settle orders till 5, which should settle orders 4 and 5. But since nextOrderToSettle is not updated,
settleOrders function will fetch for orders from 3 to 5, which reverts because of IdSorterToParamNotFound() error;

1 function testSettleOrders() public {
2 uint256 _amount = 1000;
3 instrumentRegistry.updateAuditedNavPerShare(
4 keccak256("LIBRE_FUND_ADMIN_ROLE"), subscriptionBook.instrumentId(), 1000
5);
6 dealerRegistry.allowDealer(0x0, LIBRE_DEALER, LIBRE_INSTRUMENT, true);
7 investorRegistry.allowInvestor(LIBRE_DEALER_ROLE, LIBRE_INVESTOR);
8 paymentToken.mint(LIBRE_INVESTOR_WALLET, _amount); // 1000
9 dealerRegistry.allowDealer(0x0, LIBRE_DEALER, LIBRE_INSTRUMENT, true);

10 investorRegistry.allowInvestor(LIBRE_DEALER_ROLE, LIBRE_INVESTOR_2);
11 paymentToken.mint(LIBRE_INVESTOR_WALLET_2, _amount + 1000); // 2000
12 dealerRegistry.allowDealer(0x0, LIBRE_DEALER, LIBRE_INSTRUMENT, true);
13 investorRegistry.allowInvestor(LIBRE_DEALER_ROLE, LIBRE_INVESTOR_3);
14 paymentToken.mint(LIBRE_INVESTOR_WALLET_3, _amount + 100); // 1100
15 dealerRegistry.allowDealer(0x0, LIBRE_DEALER, LIBRE_INSTRUMENT, true);
16 investorRegistry.allowInvestor(LIBRE_DEALER_ROLE, LIBRE_INVESTOR_4);
17 paymentToken.mint(LIBRE_INVESTOR_WALLET_4, _amount + 200); // 1200
18 dealerRegistry.allowDealer(0x0, LIBRE_DEALER, LIBRE_INSTRUMENT, true);
19 investorRegistry.allowInvestor(LIBRE_DEALER_ROLE, LIBRE_INVESTOR_5);
20 paymentToken.mint(LIBRE_INVESTOR_WALLET_5, _amount - 100); // 900
21

22 // five investors create order, confirm and lock tokens
23 vm.startPrank(LIBRE_INVESTOR_WALLET);
24 uint256 orderId1 = subscriptionBook.investorCreateOrder(_amount);
25 subscriptionBook.investorConfirmOrder(orderId1);
26 paymentToken.approve(address(subscriptionBook), type(uint256).max);
27 subscriptionBook.investorLockTokens(orderId1);
28 vm.stopPrank();
29

30 vm.startPrank(LIBRE_INVESTOR_WALLET_2);
31 uint256 orderId2 = subscriptionBook.investorCreateOrder(_amount + 1000);
32 subscriptionBook.investorConfirmOrder(orderId2);
33 paymentToken.approve(address(subscriptionBook), type(uint256).max);
34 subscriptionBook.investorLockTokens(orderId2);
35 vm.stopPrank();
36

37 vm.startPrank(LIBRE_INVESTOR_WALLET_3);
38 uint256 orderId3 = subscriptionBook.investorCreateOrder(_amount + 100);
39 subscriptionBook.investorConfirmOrder(orderId3);
40 paymentToken.approve(address(subscriptionBook), type(uint256).max);
41 subscriptionBook.investorLockTokens(orderId3);
42 vm.stopPrank();
43

44 vm.startPrank(LIBRE_INVESTOR_WALLET_4);
45 uint256 orderId4 = subscriptionBook.investorCreateOrder(_amount + 200);
46 subscriptionBook.investorConfirmOrder(orderId4);
47 paymentToken.approve(address(subscriptionBook), type(uint256).max);
48 subscriptionBook.investorLockTokens(orderId4);
49 vm.stopPrank();
50

51 vm.startPrank(LIBRE_INVESTOR_WALLET_5);
52 uint256 orderId5 = subscriptionBook.investorCreateOrder(_amount - 100);
53 subscriptionBook.investorConfirmOrder(orderId5);
54 paymentToken.approve(address(subscriptionBook), type(uint256).max);
55 subscriptionBook.investorLockTokens(orderId5);
56 vm.stopPrank();
57

58 subscriptionBook.settleOrders(orderId2, 10000, keccak256("LIBRE_FUND_ADMIN_ROLE")); // admin settling orders till 2
59 subscriptionBook.adminCancelOrder(orderId3, keccak256("LIBRE_FUND_ADMIN_ROLE")); // admin cancelling order 3
60 subscriptionBook.settleOrders(orderId5, 10000, keccak256("LIBRE_FUND_ADMIN_ROLE")); // admin trying to settle

orders till 5 but reverts↪

61 }

While canceling the order nextOrderToSettle is not updated.

11

NM-0099 - LIBRE - SECURITY REVIEW

1 function _afterCancelOrderCheck(uint256 _orderId, Order memory _order, uint256 _submitter) internal {
2 ...
3

4 if (_order.confirmed) {
5 confirmedAmount -= _order.amount;
6 confirmedAmountPerInvestor[_order.investorId] -= _order.amount;
7

8 // If locked update the locked amount
9 if (!_order.available) {

10 amountLocked -= _order.amount;
11 paymentToken.transfer(_order.beneficiary, _order.amount);
12 removeId(_orderId);
13 }
14 }
15

16 ...
17

18 // @audit update the nextOrderToSettle
19

20 // delete the order
21 delete orders[_orderId];
22 emit OrderCanceled(_orderId, _submitter);
23 }

Recommendation(s): Consider updating the nextOrderToSettle variable while the admin is canceling the order to resolve this issue in
case the canceled order equals to nextOrderToSettle.

if (cancelled_id == nextOrderToSettle) then set nextOrderToSettle;

Status: Fixed

Update from the client: Fixed in b502050

6.5 [High] Missing zero check for investorId could be abused to drain tokens
File(s): SubscriptionBook.sol

Description: In the function checkCorrectInvestor(...), it is called investorRegistry to query the investorId of the sender. Similarly,
in the function checkCorrectDealer(...), dealerRegistry queries the dealerId and investorRegistry to query the dealerId of the given
investor. However, all these external calls lack zero checks, which means if there is not a valid investor or dealer, these registries will return
bytes32(0) instead of reverting.

1 //
2 // @audit both dealerID and investorId could be 0
3 //
4 function checkCorrectDealer(bytes32 _investorId) internal view {
5 bytes32 dealerId = dealerRegistry.getIdFromWallet(msg.sender);
6 if (investorRegistry.getDealer(_investorId) != dealerId) {
7 revert IOrderPipelineUnauthorized();
8 }
9 }

As a result, an attacker can create orders for investorId = bytes32(0) since it passed all the checks in the functions investorCreateOrder(...)
or checkCorrectInvestor(...). The problem is in the function _afterLockOrderCheck(...), the dealer can specify the wallet that will pay
the USDC _investorWallet

12

https://github.com/NethermindEth/libre-platform-contracts/commit/b5020507b7732e78918c885159967917b734161b
https://github.com/NethermindEth/libre-platform-contracts/blob/e22cc74c094985a97a4faf83844c8d51dfb6af12/src/SubscriptionBook.sol

NM-0099 - LIBRE - SECURITY REVIEW

1 ///
2 // @audit can be used to drain anyone approved token to the contract
3 ///
4 function _afterLockOrderCheck(uint256 _orderId, Order memory _order, address _investorWallet, uint256 _submitter)
5 internal
6 {
7 address sender;
8 if (_investorWallet == address(0x0)) {
9 sender = msg.sender;

10 } else {
11 if (_order.investorId != investorRegistry.getIdFromWallet(_investorWallet)) {
12 revert IOrderPipelineWrongInvestor();
13 }
14 sender = _investorWallet;
15 }
16

17 usdc.transferFrom(sender, address(this), _order.amount);

As we can see, in case investorId = bytes32(0), any wallet that did not belong to any investor will be valid to pay since it checked
_order.investorId != investorRegistry.getIdFromWallet(_investorWallet). For instance, if an investor previously added a wallet,
approved the contract to transfer USDC, then removed the wallet, this wallet can be drained if he forgot to revoke the allowance.

Recommendation(s): Add zero checks for investorId and dealerId.

Status: Fixed

Update from the client: Fixed in e88db8d

6.6 [High] order.amountPaid is updated with the amount sent to the treasury instead
of beneficiary

File(s): RedemptionBook.sol

Description: In the function settleOrders(...), when amountSettled is greater than zero, the _calculateFeeDeduction(...) is called to
compute the amountToInvestor and amountToPlatform to be transferred to the beneficiary and treasury, respectively. The function is listed
below:

1 function settleOrders(uint256 _lastOrderId, uint256 _percentageToSettle, bytes32 _role) public override {
2 ...
3 if (amountSettled != 0) {
4 _registerInvestorSettlement(order.investorId, amountSettled);
5 (uint256 amountToInvestor, uint256 amountToPlatform) =
6 _calculateFeeDeduction(order.investorId, amountSettled, periodStart);
7

8 // Burn ST and transfer payment to beneficiary
9

10 securityToken.burn(amountSettled);
11 // do payment and update storage
12 uint256 amountToPay = amountToInvestor * unauditedNav / 10 ** securityToken.decimals();
13 usdc.transfer(order.beneficiary, amountToPay);
14 if (amountToPlatform != 0) {
15 amountToPay = amountToPlatform * unauditedNav / 10 ** securityToken.decimals();
16 usdc.transfer(treasury, amountToPay);
17 }
18

19 totalToSettle -= amountSettled;
20 /*
21 @audit the amountToPay passed to _partialSettlement is the amount in some scenarios
22 is calculated based on the amountToInvestor and others on the amountToPlatform
23 */
24 _partialSettlement(orderId, order.investorId, amountToPay, amountSettled);
25 }
26 ...
27 }

However, when amountToPlatform is greater than zero, the amount to be transferred to the treasury is calculated by overwriting the
variable amountToPay. Consequently, the paid amount passed to _partialSettlement(...) for updating the orders[_orderId].amountPaid
contains the amount transferred to the treasury, not the beneficiary.

13

https://github.com/NethermindEth/libre-platform-contracts/commit/e88db8da563a0acbe3bffa7af911714215759d4c
https://github.com/NethermindEth/libre-platform-contracts/blob/e22cc74c094985a97a4faf83844c8d51dfb6af12/src/RedemptionBook.sol#L473

NM-0099 - LIBRE - SECURITY REVIEW

1 function _partialSettlement(uint256 _orderId, bytes32 _investorId, uint256 _amountPaid, uint256 _amountSettled)
2 internal
3 {
4 // Update order state
5 orders[_orderId].amountPaid += _amountPaid;
6 orders[_orderId].amountSettled += _amountSettled;
7 ...
8 }

Consequences: The order.amountPaid can contain the amount sent to the treasury and not the real amount sent to the beneficiary. The
beneficiary can receive a greater amount than required.

1 function rebalanceSettlements(uint256 _lastOrderToRebalance, bytes32 _role) external {
2 ...
3 bool loopToLast = true;
4 while (loopToLast) {
5 Order memory order = orders[start];
6 uint256 totalToBePaid = order.amount * auditedNav / decimals;
7 /*
8 @audit order.amountPaid can contain the amount sent to the treasury
9 and not the real amount sent to the beneficiary.

10 */
11 if (totalToBePaid > order.amountPaid) {
12 usdc.transfer(order.beneficiary, totalToBePaid - order.amountPaid);
13 orders[start].amountPaid = totalToBePaid;
14 }
15 ...
16 }

Recommendation(s): Ensure that the orders[_orderId].amountPaid is updated with the paid amount to the beneficiary instead of the
registry.

Status: Fixed

Update from the client: Fixed in e88db8d

6.7 [Medium] Enabling a module without resetting the registries leads to incorrect
behavior of static checks

File(s): RulesEngine.sol, DealerRulesEngine.sol

Description: In both rules engines, certain registries are reset when a new module is registered to ensure that static checks are performed
accurately. However, the problem arises when enabling or disabling a module, as the registries are not reset accordingly.

Consider the following scenario:

1. Module A is added, and the registries are reset to trigger static checks;

2. Module A is subsequently disabled, and Module B is added. The registries are reset once again, and static checks are now
performed exclusively for Module B;

3. If Module A is enabled again, the registries are not reset, and the static checks continue to be applied only for Module B. This
results in bypassing all the rules defined in module A;

Recommendation(s): Consider resetting the registries when enabling a module.

Status: Fixed

Update from the client: Fixed in ee9ca15

14

https://github.com/NethermindEth/libre-platform-contracts/commit/e88db8da563a0acbe3bffa7af911714215759d4c
https://github.com/NethermindEth/libre-platform-contracts/blob/6625b3d253d96de74561c28461a7036ee9bea7d8/src/RulesEngine.sol
https://github.com/NethermindEth/libre-platform-contracts/blob/6625b3d253d96de74561c28461a7036ee9bea7d8/src/DealerRulesEngine.sol
https://github.com/NethermindEth/libre-platform-contracts/commit/ee9ca15a9c00c86943972328f28ce231811cfd73

NM-0099 - LIBRE - SECURITY REVIEW

6.8 [Medium] Investors and dealers can add any wallet even if it does not belong to
them

File(s): InvestorRegistry.sol

Description: The InvestorRegistry contract currently allows investors to add an unlimited number of wallets, even if those wallets do not
belong to them. The only condition is that the wallet has not been added by someone else at the same moment. However, this assumption
is insufficient to ensure that the wallet address belongs to the investor.

1 function addWallet(address _wallet) external {
2 bytes32 hashedWallet = keccak256(abi.encodePacked(_wallet));
3 if (getBytes(hashedWallet, OWNED_BY) != 0x0) {
4 revert InvestorRegistryWalletIsClaimedBySomeoneElse();
5 }
6 bytes32 hashedCurrentWallet = keccak256(abi.encodePacked(msg.sender));
7 bytes32 investorId = getBytes(hashedCurrentWallet, OWNED_BY);
8 if (!getBool(investorId, IS_INVESTOR)) {
9 revert InvestorRegistryNotAnInvestor();

10 }
11 _pushAddressArray(investorId, OWNED_WALLETS, _wallet);
12 _setBytes(hashedWallet, OWNED_BY, investorId);
13 emit WalletAdded(_wallet);
14 }

As a result, an attacker can add any wallet address they know belongs to other investors. If, by mistake, the other investor approves USDC
to the contract, the attacker can steal it.

Recommendation(s): Consider adding a mechanism to verify the ownership of a wallet, such as implementing a signature scheme or
requiring the wallet to confirm on-chain after being added by an investor.

Status: Fixed

Update from the client: Fixed in e88db8d

6.9 [Medium] Investors are unable to redeem the entire amount
File(s): HoldingsModule.sol, BidsAggregationLimitModule.sol, SubscriptionSizeModule.sol

Description: Currently, in these modules, the redemption check returns false if the net holding of an investor after redemption is smaller
than the minimum holding per investor. However, it fails to consider the scenario where investors want to redeem the full amount. In
such cases, the net holding of the investor after the redemption action becomes 0, causing the check to fail. The code snippet below
demonstrates the check implemented in the function _checkRedemptionConfirmation(...):

1 // @audit does not allow to redeem the full amount, _incomingRedemption = investorNetHolding
2 if (investorNetHolding - _incomingRedemption < minHoldingPerInvestor) {
3 return (false, "SubscriptionSizeModule: Incoming amount breaches min investor holding");
4 } else {
5 return (true, "");
6 }

Recommendation(s): Consider modifying the check to allow investors to redeem the full amount.

Status: Fixed

Update from the client: Fixed in c76db59

15

https://github.com/NethermindEth/libre-platform-contracts/blob/e22cc74c094985a97a4faf83844c8d51dfb6af12/src/registries/InvestorRegistry.sol
https://github.com/NethermindEth/libre-platform-contracts/commit/e88db8da563a0acbe3bffa7af911714215759d4c
https://github.com/NethermindEth/libre-platform-contracts/blob/e88db8da563a0acbe3bffa7af911714215759d4c/src/modules/general/HoldingsModule.sol
https://github.com/NethermindEth/libre-platform-contracts/blob/e88db8da563a0acbe3bffa7af911714215759d4c/src/modules/subscriptions/BidsAggregationLimitModule.sol
https://github.com/NethermindEth/libre-platform-contracts/blob/e88db8da563a0acbe3bffa7af911714215759d4c/src/modules/subscriptions/SubscriptionSizeModule.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/c76db59e73aa1dd74dfb808fabccdabf20c62617

NM-0099 - LIBRE - SECURITY REVIEW

6.10 [Medium] Last operation timestamp in InvestorRegistry can be overridden
File(s): InvestorRegistry.sol

Description: The InvestorRegistry contract inherits the EternalRegistryStorage contract, which allows for setting value for any key in
some mappings. Certain special keys need to be reserved for special variables to make it work. However, the last operation timestamp in
the code snippet below is a hash of LAST_OPERATION_TIMESTAMP and _instrumentId, and has not been reserved. As a result, any sender
with access to the function setUint(...) can override its value.

1 function updateInvestorLastOperationTimestamp(bytes32 _investorId, bytes32 _instrumentId, uint256 _lastTimestamp)
2 external
3 onlyInstrument(_instrumentId)
4 {
5 // TODO: If restrictions are added for certain keys, this one should be secured when adding an instrument
6 // @audit key is hash of LAST_OPERATION_TIMESTAMP and _instrumentId, thus is not reserved
7 _setUint(_investorId, keccak256(abi.encodePacked(LAST_OPERATION_TIMESTAMP, _instrumentId)), _lastTimestamp);
8 }
9

10 // @audit In BaseRegistry, sender that has access can override the last operation timestamp
11 function setUint(bytes32 _id, bytes32 _key, uint256 _value, bytes32 _senderRole) external {
12 _checkHasAccess(_id, _senderRole);
13 _onlyConfigurableKey(_id, _key);
14 _setUint(_id, _key, _value);
15 _afterEntryUpdate(_id);
16 }

Recommendation(s): Consider reserving the key for the last operation timestamp in the InvestorRegistry contract to prevent it from
being overridden by the function setUint(...).

Status: Fixed

Update from the client: Fixed in e88db8d

6.11 [Medium] The function settleOrders(...) never marks order as done
File(s): SubscriptionBook.sol

Description: The function settleOrders(...) is used to settle a set of orders after the three phases are executed (create order, confirm
the order, and lock tokens). When the settlement updates the state variables, orders[orderId].amount can be decreased to zero. In this
case, the order should be marked as done. However, orders[_orderId].confirmed remains true.

1 function settleOrders(uint256 _lastOrderId, uint256 _percentageToSettle, bytes32 _role) external override {
2 ...
3 if (orders[orderId].amount == 0) {
4 lastEmptyOrder = orderId;
5 amountOfEmptyOrders++;
6 _decreaseInvestorOrders(order.investorId);
7 }
8 ...
9 }

Recommendation(s): Ensure that orders are marked as done by adding the code line:

1 if (orders[orderId].amount == 0) {
2 lastEmptyOrder = orderId;
3 amountOfEmptyOrders++;
4 _decreaseInvestorOrders(order.investorId);
5 + orders[_orderId].confirmed = false;
6 }

Status: Fixed

Update from the client: Fixed in e88db8d

16

https://github.com/NethermindEth/libre-platform-contracts/blob/6625b3d253d96de74561c28461a7036ee9bea7d8/src/registries/InvestorRegistry.sol
https://github.com/NethermindEth/libre-platform-contracts/commit/e88db8da563a0acbe3bffa7af911714215759d4c
https://github.com/NethermindEth/libre-platform-contracts/blob/e22cc74c094985a97a4faf83844c8d51dfb6af12/src/SubscriptionBook.sol#L410-L413
https://github.com/NethermindEth/libre-platform-contracts/commit/e88db8da563a0acbe3bffa7af911714215759d4c

NM-0099 - LIBRE - SECURITY REVIEW

6.12 [Medium] The last item is never checked due to an incorrect implementation of
the function getValueAfterTimestamp(...)

File(s): MonotonicQueue.sol

Description: The function getValueAfterTimestamp(...) currently utilizes a binary search to locate the first item in the queue with a
greater or equal timestamp. However, there is an issue with the initial range setup for the binary search. The range is set as low = head
and high = tail - 1, but the while loop condition low < high causes the last item in the queue to be excluded from comparison with the
query parameter. If the queue only contains one element, the while loop will not execute, and the function will return the low item without
validating its timestamp.

1 uint256 low = head;
2 uint256 high = tail - 1; // @audit element at tail - 1 is never checked
3 while (low < high) {
4 uint256 mid = (low + high) / 2;
5 if (_q.data[mid].timestamp < _timestamp) {
6 low = mid + 1;
7 } else {
8 high = mid;
9 }

10 }
11

12 if (low >= tail) {
13 return (0, 0);
14 }
15

16 return (_q.data[low].timestamp, _q.data[low].value);

Recommendation(s): Consider fixing the issue by changing the initial range of the binary search.

Status: Fixed

Update from the client: Fixed in e88db8d

6.13 [Medium] investorBalance[] is not updated when investors add or remove a
wallet

File(s): BaseUserRegistry.sol

Description: Each investor can own multiple wallets in the Libre platform. Each wallet will have its balance of security tokens, and the
total amount of security tokens an investor owns should be stored in the investorBalance[] array in the InvestorRegistry. However, it
has been observed that this investorBalance[] array is not updated when investors add or remove their wallets. As a result, there is a
discrepancy between the actual total balance and the balance recorded in the InvestorRegistry.

1 //
2 // @audit Not update investorBalance[] in InvestorRegistry
3 //
4 function removeWallet(uint256 _index) external override {
5 bytes32 _userId = ownedBy[msg.sender];
6 _checkIsValidId(_userId);
7

8 uint256 length = ownedWallets[_userId].length;
9 address walletToDelete = ownedWallets[_userId][_index];

10 ownedWallets[_userId][_index] = ownedWallets[_userId][length - 1];
11 ownedWallets[_userId].pop();
12

13 delete ownedBy[walletToDelete];
14

15 emit WalletRemoved(_index);
16 }

In addition, the total balance of an investor is used when the admin wants to call the function adminForceRedemption(). This means that
an investor can block the admin from executing a forced redemption by simply removing any wallet with a non-zero balance.

Recommendation(s): Consider updating investorBalance[] in InvestorRegistry when adding or removing a wallet.

Status: Fixed

Update from the client: Fixed in 5fa9623. Wallets removal functionality deleted. Given that wallets can be only added once to the system,
they will belong to a unique investor. Before being added, wallets can’t hold any of the assets issued in the platform, meaning that, at
additional time, they are empty, so no balance update is needed.

17

https://github.com/NethermindEth/libre-platform-contracts/blob/e22cc74c094985a97a4faf83844c8d51dfb6af12/src/lib/MonotonicQueue.sol
https://github.com/NethermindEth/libre-platform-contracts/commit/e88db8da563a0acbe3bffa7af911714215759d4c
https://github.com/NethermindEth/libre-platform-contracts/blob/e88db8da563a0acbe3bffa7af911714215759d4c/src/registries/BaseUserRegistry.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/5fa962315c203c688dfaa1b6d947a63f246bf2d3

NM-0099 - LIBRE - SECURITY REVIEW

6.14 [Medium] The function rebalanceSettlements(...) lacks global state update like
the function _partialSettlement(...)

File(s): RedemptionBook.sol

Description: In the RedemptionBook contract, the rebalanceSettlements(...) function is responsible for rebalancing the settlements of
orders in the current period using the audited NAV (Net Asset Value). If the amount to be paid to an investor is higher than the paid amount,
the contract pays the remaining amount and updates the data in the Order struct. However, it fails to update global state variables, such
as settledAmount and confirmedAmount, which are typically updated in the normal flow when using the settleOrders(...) function.

1 function rebalanceSettlements(uint256 _lastOrderToRebalance, bytes32 _role) external {
2 _checkRoleHasAccess(_role);
3 uint256 auditedNav = instrumentRegistry.getAuditedNavPerShare(instrumentId);
4

5 uint256 decimals = 10 ** securityToken.decimals();
6

7 bool loopToLast = true;
8 while (loopToLast) {
9 Order memory order = orders[start];

10 uint256 totalToBePaid = order.amount * auditedNav / decimals;
11 if (totalToBePaid > order.amountPaid) {
12 usdc.transfer(order.beneficiary, totalToBePaid - order.amountPaid);
13 orders[start].amountPaid = totalToBePaid;
14 }
15 //
16 // @audit amountSettled of Order is updated but not the global state settledAmount
17 //
18 orders[start].amountSettled = order.amount;
19

20 if (start == _lastOrderToRebalance) {
21 loopToLast = false;
22 }
23

24 emit OrderRebalanced(start);
25 _decreaseRedeemersOrders(order.investorId);
26 orders[start].confirmed = false; // mark order as done
27 removeId(start);
28 }
29 }

Recommendation(s): Consider updating the global state variables to maintain consistency in behavior when using both the settleOrders(...)
and rebalanceSettlements(...) functions.

Status: Fixed

Update from the client: Fixed in e88db8d

6.15 [Medium] settledAmount is never reset in _instantSettlement(...)

File(s): SubscriptionBook.sol, RedemptionBook.sol

Description: The function settleOrders(...) gets the currentPeriod to check if the round changed (forPeriod != currentPeriod).
When currentPeriod is different to forPeriod, the settledAmount is reset, as described below:

1 function settleOrders(uint256 _lastOrderId, uint256 _percentageToSettle, bytes32 _role) external override {
2 ...
3 (uint256 currentPeriod,,) = instrumentRegistry.currentRedemptionPeriod(instrumentId);
4

5 if (forPeriod != currentPeriod) {
6 forPeriod = currentPeriod;
7 settledAmount = 0;
8 nextOrderToSettle = 0;
9 }

10 ...
11 }

18

https://github.com/NethermindEth/libre-platform-contracts/blob/e22cc74c094985a97a4faf83844c8d51dfb6af12/src/RedemptionBook.sol
https://github.com/NethermindEth/libre-platform-contracts/commit/e88db8da563a0acbe3bffa7af911714215759d4c
https://github.com/NethermindEth/libre-platform-contracts/blob/e22cc74c094985a97a4faf83844c8d51dfb6af12/src/SubscriptionBook.sol#L364
https://github.com/NethermindEth/libre-platform-contracts/blob/e22cc74c094985a97a4faf83844c8d51dfb6af12/src/RedemptionBook.sol#L523

NM-0099 - LIBRE - SECURITY REVIEW

However, _instantSettlement(...) does not check if the currentPeriod changed to reset settledAmount.

1 function _instantSettlement(uint256 _orderId) internal {
2 Order memory order = orders[_orderId];
3

4 uint256 auditedNav = instrumentRegistry.getAuditedNavPerShare(instrumentId);
5 uint256 amountToIssue = (order.amount * 10 ** securityToken.decimals()) / auditedNav;
6

7 securityToken.issue(order.beneficiary, amountToIssue);
8

9 _partialSettlement(_orderId, order.investorId, order.amount);
10 _decreaseInvestorOrders(order.investorId);
11 orders[_orderId].confirmed = false;
12

13 removeId(_orderId);
14 }

Recommendation(s): Ensure _instantSettlement(...) resets settledAmount when the round changes in both contracts SubscriptionBook
and RedemptionBook.

Status: Fixed

Update from the client: Fixed in e88db8d

6.16 [Low] Functions initialize(...) can be frontrun
File(s): src/

Description: The function initialize(...) is responsible for initializing important contract states, but anyone can call it. An attacker
could potentially initialize the contract before the legitimate deployer does, hoping the victim continues to use the compromised contract.
In the best case for the victim, they would notice the compromise and have to redeploy their contract, incurring additional gas costs. The
code snippet below shows an example of the function initialize(...) in the RulesEngine contract:

1 function initialize(
2 bytes32 _instrumentId,
3 IInvestorRegistry _investorRegistry,
4 IDealerRegistry _dealerRegistry,
5 IFundRegistry _fundRegistry,
6 IInstrumentRegistry _instrumentRegistry,
7 IRoleRegistry _roleRegistry,
8 IEternalRegistryStorage _jurisdictionRegistry
9) external initializer {

10 instrumentId = _instrumentId;
11 investorRegistry = _investorRegistry;
12 fundRegistry = _fundRegistry;
13 dealerRegistry = _dealerRegistry;
14 instrumentRegistry = _instrumentRegistry;
15 roleRegistry = _roleRegistry;
16 jurisdictionRegistry = _jurisdictionRegistry;
17 }

Recommendation(s): Consider using the constructor to initialize non-proxied contracts or employ a factory contract for deploying and
initializing contracts in an atomic transaction.

Status: Fixed

Update from the client: Fixed in e88db8d

19

https://github.com/NethermindEth/libre-platform-contracts/commit/e88db8da563a0acbe3bffa7af911714215759d4c
https://github.com/NethermindEth/libre-platform-contracts/tree/e22cc74c094985a97a4faf83844c8d51dfb6af12/src/
https://github.com/NethermindEth/libre-platform-contracts/commit/e88db8da563a0acbe3bffa7af911714215759d4c

NM-0099 - LIBRE - SECURITY REVIEW

6.17 [Low] Incorrect definition of INITIAL_RESTRICTED_PERIOD_ALLOWANCE constant vari-
able

File(s): RedemptionBook.sol

Description: Incorrect definition of constant variables can lead to critical issues like reading wrong values from storage.

In RedemptionBook contract INITIAL_RESTRICTED_PERIOD_ALLOWANCE is incorrectly defined with the same value of INITIAL_SUBSCRIPTION_-
RESTRICTED_PERIOD_ALLOWANCE. This wrong uint value is read to the allowedPercent variable in _calculateFeeDeduction function.

1 contract RedemptionBook is Initializable, PermissionedContract, IdSorter, IRedemptionBook {
2 ...
3 bytes32 constant INITIAL_SUBSCRIPTION_RESTRICTED_PERIOD_ALLOWANCE =
4 keccak256("INITIAL_SUBSCRIPTION_RESTRICTED_PERIOD_ALLOWANCE");
5 bytes32 constant INITIAL_SUBSCRIPTION_RESTRICTED_PERIOD_FEE =
6 keccak256("INITIAL_SUBSCRIPTION_RESTRICTED_PERIOD_FEE");
7 bytes32 constant INITIAL_RESTRICTED_PERIOD_ALLOWANCE =
8 keccak256("INITIAL_SUBSCRIPTION_RESTRICTED_PERIOD_ALLOWANCE"); // @audit value is clashing with

INITIAL_SUBSCRIPTION_RESTRICTED_PERIOD_ALLOWANCE↪

9 ...
10 }

Recommendation(s): Consider changing the value of INITIAL_RESTRICTED_PERIOD_ALLOWANCE to keccak256("INITIAL_RESTRICTED_-
PERIOD_ALLOWANCE")

Status: Fixed

Update from the client: Fixed in 04dc384

6.18 [Low] Malicious contract manager can continue to pass hasAccess after man-
ager role is changed

File(s): RoleRegistry.sol

Description: In the contract RoleRegistry it is possible to change the unique 32-byte role identifier for the "contract manager" role through
the setContractManager(...) function. An expectation of changing the contract manager role identifier is that previous contract managers
will no longer have access to the permissioned functions. However, due to a logical or statement in hasAccess(...) it is still possible for
an old contract manager with the previous role identifier to continue using permissioned functions. The hasAccess(...) function is shown
below:

1 function hasAccess(address _contract, bytes4 _selector, address _requestor, bytes32 _role) public view returns (bool)
2 {
3 Permission memory permission = contractPermissions[_contract].permissions[keccak256(abi.encode(_selector, _role))];
4 return hasRole(_role, _requestor)
5 && (
6 (contractPermissions[_contract].manager == _role)
7 || (permission.granted && (permission.timestamp > contractPermissions[_contract].lastReset[_selector]))
8);
9 }

When the contract manager role changes, the line contractPermissions[_contract].manager == _role will always return false, but a
malicious manager could have granted access to each function selector individually. This would allow the second logic set in the or
statement to be true.

This finding has been assigned a Low severity since it requires no reset, and the Openzeppelin AccessControl role has not been removed
for the malicious manager. This would work if the contract admins wanted to change contract managers _only_ by changing the contract
manager role identifier, which is very unlikely.

Recommendation(s): After discussion with the client, it seems unlikely that the setContractManager(...) function should ever be used
after the contract manager role has been initially set. If this function cannot be called more than once, this issue can be addressed, so
consider making changes to setContractManager(...) so that the role identifier can only be set once.

Status: Fixed

Update from the client: Fixed in 9597a11

20

https://github.com/NethermindEth/libre-platform-contracts/blob/e88db8da563a0acbe3bffa7af911714215759d4c/src/RedemptionBook.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/04dc384df29884f2534a4bfdb801a86cd64b9c27
https://github.com/NethermindEth/libre-platform-contracts/blob/e88db8da563a0acbe3bffa7af911714215759d4c/src/registries/RoleRegistry.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/9597a1157713835607b71cc55e03eac8ac17f8f5

NM-0099 - LIBRE - SECURITY REVIEW

6.19 [Info] Duplicate elements in operationModules[] could cause deleteModule(...)
to work incorrectly

File(s): RulesEngine.sol

Description: If IOperationModule(clone).getOperations() returns duplicated operations, it could cause the function deleteModule(...)
to work incorrectly. Because the function deleteModule(...) has a loop that will break when it finds the first matched element.

1 OPERATIONS[] memory ops = IOperationModule(clone).getOperations();
2 for (uint256 i = 0; i < ops.length; ++i) {
3 for (uint256 j = 0; j < operationModules[ops[i]].length; ++j) {
4 // @audit can one module be in ops[i] twice ?
5 if (operationModules[ops[i]][j] == clone) {
6 //delete address by replacing it with last one in the array and then pop the last one
7 operationModules[ops[i]][j] = operationModules[ops[i]][operationModules[ops[i]].length - 1];
8 operationModules[ops[i]].pop();
9 break;

10 }
11 }
12 }

Recommendation(s): Consider reviewing the logic for removing modules if duplicated operations are possible within a single module.

Status: Fixed

Update from the client: Fixed in d0cee99

6.20 [Info] Redundant loop check in the function _editModuleClone(...)

File(s): DealerRulesEngine.sol

Description: The function _editModuleClone(...) is responsible for editing a module. However, it contains a redundant loop check within
the code. After finding the position of the module, it breaks the loop. However, since this is a nested loop, the outer loop continues to run
and wastes gas.

1 function _editModuleClone(address _moduleClone, bool _status, bytes32 _dealerId) internal {
2 OPERATIONS[] memory ops = IOperationModule(_moduleClone).getOperations();
3 for (uint256 i = 0; i < ops.length; ++i) {
4 for (uint256 j = 0; j < operationModules[ops[i]][_dealerId].length; ++j) {
5 //make sure clone belongs to dealer
6 if (operationModules[ops[i]][_dealerId][j] == _moduleClone) {
7 //enable/disable clone
8 // @audit This break will not stop the outer loop
9 isDisabledModule[_moduleClone] = !_status;

10 break;
11 }
12 }
13 }
14 }

Recommendation(s): Consider returning from the function after finding the position of _moduleClone in the function _editModuleClone(...).
This will prevent unnecessary execution of the outer loop and optimize gas usage.

Status: Fixed

Update from the client:Fixed in e1de6b8

21

https://github.com/NethermindEth/libre-platform-contracts/blob/6625b3d253d96de74561c28461a7036ee9bea7d8/src/RulesEngine.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/d0cee996c888038e4a5ef6ef99c04e8e89b3c7e1
https://github.com/NethermindEth/libre-platform-contracts/blob/6625b3d253d96de74561c28461a7036ee9bea7d8/src/DealerRulesEngine.sol
https://github.com/NethermindEth/libre-platform-contracts/commit/e1de6b89570cd66467d6751fb6034f3c6fb2431d

NM-0099 - LIBRE - SECURITY REVIEW

6.21 [Info] Registering the same module again will not produce the desired outcome
File(s): RulesEngine.sol, DealerRulesEngine.sol

Description: In both rules engines, when a new module is registered, the contract creates a new instance of that module by cloning or
deploying it. The function initialize(...) is then called on the clone to initialize crucial parameters for the module. Here is the relevant
code snippet in Solidity.

1 function _registerModule(address _module, bytes32 _dealerId) internal returns (address) {
2 address clone = _module.cloneDeterministic(keccak256(abi.encodePacked(_module, _dealerId)));
3 ///
4 // @audit add, delete, then add the same module again will not work
5 ///
6 IOperationModule(clone).initialize(
7 investorRegistry, dealerRegistry, fundRegistry, instrumentRegistry, jurisdictionRegistry
8);
9 investorRegistry.resetCheckedSinceDealerRulesUpdate(_dealerId);

10 OPERATIONS[] memory ops = IOperationModule(clone).getOperations();
11 for (uint256 i = 0; i < ops.length; ++i) {
12 operationModules[ops[i]][_dealerId].push(clone);
13 }
14 return clone;
15 }

However, the contract utilizes CREATE2 to deploy the clone, using the salt as the hash of the original module and dealer ID. Consequently,
when the same module is redeployed, it continues to employ the same salt, resulting in an unchanged clone address and subsequent
failure.

Recommendation(s): Consider introducing an external parameter to allow for the modification of the salt during the cloning process of
the module.

Status: Fixed

Update from the client: Fixed in d0cee99

6.22 [Info] The total storage variable in IdSorter can be manipulated
File(s): IdSorter.sol

Description: When inserting an ID into the queue using the function insertId(...), it should revert if you insert an ID that already exists.
However, if you insert an ID equal to the first ID in the queue, the function will not revert. This will lead to the total storage variable being
incremented, which is used in getIdsOrder(...) and leads to appended zero values on the end of the returned array. This may impact
off-chain monitoring or any UI which reads from the function. Because the implementation relies on a linked list with mappings, this does
not affect the structure of the queue, so the protocol will continue to work as expected, even with the larger than expected total.

This bug is caused by the initial current value in the else logic. The current is set to the slot next to the start, i.e., the second value.
This means that the comparison to check if the inserted value is equal to start never happens. A snipped from the code is shown below:

1 uint256 current = idsQueue[start].next; // @audit `current` is set to the second item in the queue, not first
2 while (current != 0) {
3 if (id < current) {
4 idsQueue[idsQueue[current].previous].next = id;
5 idsQueue[id].previous = idsQueue[current].previous;
6 idsQueue[current].previous = id;
7 idsQueue[id].next = current;
8 break;
9 }

10 if (id == current) { // @audit If `current` is equal to `start` this comparison will never be true
11 revert IdSorterIDAlreadyInList();
12 }
13 current = idsQueue[current].next;
14 }

Recommendation(s): Ensure that start is checked not to be equal to the new ID to be inserted into the queue.

Status: Fixed

Update from the client: Fixed in b502050

22

https://github.com/NethermindEth/libre-platform-contracts/blob/6625b3d253d96de74561c28461a7036ee9bea7d8/src/RulesEngine.sol
https://github.com/NethermindEth/libre-platform-contracts/blob/6625b3d253d96de74561c28461a7036ee9bea7d8/src/DealerRulesEngine.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/d0cee996c888038e4a5ef6ef99c04e8e89b3c7e1
https://github.com/NethermindEth/libre-platform-contracts/blob/e88db8da563a0acbe3bffa7af911714215759d4c/src/IdSorter.sol
https://github.com/NethermindEth/libre-platform-contracts/commit/b5020507b7732e78918c885159967917b734161b

NM-0099 - LIBRE - SECURITY REVIEW

6.23 [Info] Typo in string used to derive storage key
File(s): registries/InstrumentRegistry.sol

Description: The contract InstrumentRegistry features eternal storage, using the keccak256 output of a string as the storage key. The
key DEALING_FREQUENCY contains a keccak256 output from a string containing a typo, as shown below:

1 bytes32 constant DEALING_FREQUENCY = keccak256("DEALING_FRQUENCY");
2 // "DEALING_FRQUENCY" -> "DEALING_FREQUENCY"

This affects the key used when accessing the dealing frequency data.

Recommendation(s): If this code is already deployed, then all further implementation upgrades must feature this same type to ensure
that the same storage slot is used, otherwise, empty data may be loaded and affect the protocol. If this code has not been deployed, then
there is less risk, and the spelling can simply be corrected.

Status: Fixed

Update from the client: Fixed in 0a237a9

6.24 [Info] insertId(...) fails to insert an element equal to the end
File(s): IdSorter.sol

Description: The function insertId(...) adds an id into the list in ascending order for idsQueue. However, if the id is equal to end, then
total is incremented, and id is not inserted.

1 function insertId(uint256 id) internal {
2 if (start == 0) {
3 start = id;
4 end = id;
5 } else if (id > end) {
6 idsQueue[end].next = id;
7 idsQueue[id].previous = end;
8 end = id;
9 } else if (id < start) {

10 idsQueue[start].previous = id;
11 idsQueue[id].next = start;
12 start = id;
13 } else {
14 uint256 current = idsQueue[start].next;
15 while (current != 0) {
16 if (id < current) {
17 idsQueue[idsQueue[current].previous].next = id;
18 idsQueue[id].previous = idsQueue[current].previous;
19 idsQueue[current].previous = id;
20 idsQueue[id].next = current;
21 break;
22 }
23 current = idsQueue[current].next;
24 }
25 }
26 total++;
27 }

Notice that there is no impact in the current code that inherits this contract since all order IDs are unique. This is just a highlighting
in case the developers reuse this code in the future for different purposes.

Recommendation(s): Consider adapting the code to succeed the insertion of id == end before total is incremented.

Status: Fixed

Update from the client: Fixed in e88db8d

23

https://github.com/NethermindEth/libre-platform-contracts/blob/e88db8da563a0acbe3bffa7af911714215759d4c/src/registries/InstrumentRegistry.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/0a237a9f346d08b73bd09747176a08332bfb16a6
https://github.com/NethermindEth/libre-platform-contracts/blob/e22cc74c094985a97a4faf83844c8d51dfb6af12/src/IdSorter.sol#L53-L65
https://github.com/NethermindEth/libre-platform-contracts/commit/e88db8da563a0acbe3bffa7af911714215759d4c

NM-0099 - LIBRE - SECURITY REVIEW

6.25 [Best Practice] Duplicated logic between the HoldingsModule and the
BidsAggregationLimitModule

File(s): HoldingsModule.sol, BidsAggregationLimitModule.sol

Description: The function checkSettleBids(...) in HoldingsModule and BidsAggregationLimitModule contains duplicated logic when
calculating the net holding. This logic can be refactored to improve code cleanliness and avoid repetition.

1 ISecurityToken token = ISecurityToken(instrumentRegistry.getAddress(_instrumentId, INSTRUMENT_TOKEN));
2 // Adding ((suply - confirmedRedemption) * nav / decimals)
3 reducedHolding = (// @audit repeated logic with HoldingsModule, consider refactor
4 token.totalSupply()
5 - IRedemptionBook(instrumentRegistry.getAddress(_instrumentId, REDEMPTION_BOOK)).getConfirmations()
6) * _navPerShare / (10 ** token.decimals());
7

8 // ((suply - confirmedRedemption) * nav / decimals) + confirmedSubscriptions
9 uint256 curHolidng = reducedHolding

10 + ISubscriptionBook(instrumentRegistry.getAddress(_instrumentId, SUBSCRIPTION_BOOK)).getConfirmations();
11

12 // In HoldingsModules
13 function _getInvestorNetHoldings(
14 bytes32 _investorId,
15 ISubscriptionBook _subscriptionBook,
16 IRedemptionBook _redemptionBook,
17 ISecurityToken _securityToken,
18 uint256 _nav,
19 uint256 _decimals
20) internal view returns (uint256) {
21 uint256 investorNetHolding = (
22 (_securityToken.getInvestorBalance(_investorId) - _redemptionBook.getInvestorConfirmations(_investorId))
23 * _nav
24) / _decimals;
25 investorNetHolding += _subscriptionBook.getInvestorConfirmations(_investorId);
26 return investorNetHolding;
27 }

Recommendation(s): Refactor the code by extracting the logic for calculating the reduced holding and getting confirmed subscriptions
into separate helper functions. This consolidation will make the code cleaner and remove duplication.

Status: Acknowledged

Update from the client: The logic has some minor changes, and it is not exactly the same anymore.

6.26 [Best Practice] Emitting address instead of index of the wallet
File(s): BaseUserRegistry.sol

Description: removeWallet function emits the wallet index from the user’s wallet address array. But emitting wallet addresses (walletToDelete)
will be useful and clear.

1 function removeWallet(uint256 _index) external override {
2 ...
3 address walletToDelete = ownedWallets[_userId][_index];
4 ...
5 emit WalletRemoved(_index); // @audit emit the address of the removed wallet
6 ...
7 }

Recommendation: Consider emitting address of wallet removed (walletToDelete) in removeWallet function. This provides better infor-
mation for anyone monitoring or interacting with the smart contract.

Status: Acknowledged

Update from the client: Wallet removals are not going to be possible after fixing investor balance issue

24

https://github.com/NethermindEth/libre-platform-contracts/blob/e88db8da563a0acbe3bffa7af911714215759d4c/src/modules/general/HoldingsModule.sol
https://github.com/NethermindEth/libre-platform-contracts/blob/e88db8da563a0acbe3bffa7af911714215759d4c/src/modules/subscriptions/BidsAggregationLimitModule.sol
https://github.com/NethermindEth/libre-platform-contracts/blob/e88db8da563a0acbe3bffa7af911714215759d4c/src/registries/BaseUserRegistry.sol

NM-0099 - LIBRE - SECURITY REVIEW

6.27 [Best Practice] Improve efficiency of insertId(...) by utilizing a hint for faster
position finding

File(s): IdSorter.sol

Description: The function insertId(...) in the IdSorter contract currently loops through a linked list from the start point to locate
the position for inserting a new element. However, if the linked list is large, this process can consume a significant amount of gas and
potentially exceed the block gas limit.

Recommendation(s): To enhance efficiency, consider implementing a hint mechanism that allows for quicker position finding. The hint
must be validated to ensure it is within the queue. The insertion process can be much cheaper by starting the while loop from the hint
instead of the beginning.

Status: Fixed

Update from the client: Fixed in 28ff961

6.28 [Best Practice] Including zero check for denominator when performing division
File(s): BidsAggregationLimitModule.sol

Description: The BidsAggregationLimitModule contains division operations that lack a zero check for the denominator. This can lead to
reverting without a clear error message when the denominator is set to 0, resulting in unexpected behavior.

1 uint256 minSubInv = instrumentRegistry.getUint(_instrumentId, MIN_SUB_INV); // @audit no zero check
2 if (reducedHolding < minHolding) {
3 validAmount = minHolding - reducedHolding;
4 reducedHolding += _totalInvestment;
5 if (reducedHolding > minHolding) {
6 validAmount += ((reducedHolding - minHolding) / minSubInv) * minSubInv;
7 }
8 } else {
9 reducedHolding = (reducedHolding - minHolding) % minSubInv;

10 validAmount = ((reducedHolding + _totalInvestment) / minSubInv) * minSubInv;
11 validAmount = (validAmount > reducedHolding) ? validAmount - reducedHolding : 0;
12 }
13

14 function _checkAmount(bytes32 _instrumentId, uint256 _amount) internal view returns (bool) {
15 uint256 investmentSize = instrumentRegistry.getUint(_instrumentId, INVESTMENT_SIZE);
16 return (_amount % investmentSize) == 0; // @audit zero check for investmentSize
17 }

Recommendation(s): Consider including a zero check for the investmentSize denominator before performing the division.

Status: Fixed

Update from the client: Fixed in 0d792a8

6.29 [Best Practice] Missing event emission
File(s): EternalRegistryStorage.sol

Description: _setReservedKey function in this contract helps to set a reserved key by restricting the key. Several registry contracts use
this to set the default reserved keys. It is important to emit an event while this is happening.

1 function _setReservedKey(bytes32 _id, bytes32 _key) internal {
2 internalKeys[_id][_key] = true;
3 // @audit missing event emission
4 }

Recommendation(s): Consider creating a separate event for adding a new reserved key, for example, AddedNewReservedKey(bytes32
indexed id, bytes32 indexed key) and update the _setReservedKey function to emit that event.

Status: Fixed

Update from the client: Fixed in d35ec67

25

https://github.com/NethermindEth/libre-platform-contracts/blob/e22cc74c094985a97a4faf83844c8d51dfb6af12/src/IdSorter.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/28ff961f9f4f8184aa13171ad623262e2da7b7fb
https://github.com/NethermindEth/libre-platform-contracts/blob/e88db8da563a0acbe3bffa7af911714215759d4c/src/modules/subscriptions/BidsAggregationLimitModule.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/0d792a8dcaf010a28869475e5c6976c83862cb24
https://github.com/NethermindEth/libre-platform-contracts/blob/e88db8da563a0acbe3bffa7af911714215759d4c/src/EternalRegistryStorage.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/d35ec67283cea8a839ee3ef4f4c30813284a96a1

NM-0099 - LIBRE - SECURITY REVIEW

6.30 [Best Practice] Prevent initialization of implementation contracts
File(s): Multiple Contracts

Description: Currently, it is possible to initialize the implementation contracts, which goes against the intended design. The implementa-
tion contracts should not be initialized directly, as they are the underlying logic for other contracts or components.

Recommendation(s): To enforce the intended behavior, consider adding _disableInitializers(...) in the constructor of the implemen-
tation contracts.

Status: Fixed

Update from the client: Fixed in e88db8d

6.31 [Best Practice] Redundant investorBalance getter in SecurityToken contract
File(s): SecurityToken

Description: The SecurityToken contract has a storage variable investorBalance which is used to track balances. The variable is public,
meaning it has its getter function. Another function exists in the contract, named getInvestorBalance(...), which acts as a getter for
investorBalance. However, since investorBalance is already public, this leads to two getters for the same storage variable.

Recommendation(s): Consider either removing the getInvestorBalance(...) function or instead the investorBalance storage variable
to private so it will not have its own getter.

Status: Fixed

Update from the client: Fixed in 8e7816d

6.32 [Best Practice] Unnecessary parent before and after token transfer function call
File(s): SecurityToken.sol

Description: The SecurityToken contract overrides the function _beforeTokenTransfer(...) with rules engine checks depending on
whether the transfer type is a mint, burn, or normal transfer. In this function, the following line is used:

1 function _beforeTokenTransfer(address _from, address _to, uint256 _amount) internal virtual override {
2 // ...
3

4 super._beforeTokenTransfer(_from, _to, _amount);
5

6 // ...
7 }

Using the parent ERC20Upgradeable._beforeTokenTransfer(...) function is unnecessary since it is a virtual function without implementa-
tion, so no logic will be executed when called. This issue also exists in the _afterTokenTransfer function.

Recommendation(s): Consider removing the super._beforeTokenTransfer(...) and super._afterTokenTransfer(...) lines to remove
unnecessary code and improve readability.

Status: Acknowledged

Update from the client: Not applicable anymore after updating OZ’s contracts to the latest version and starting using _update function.

26

https://github.com/NethermindEth/libre-platform-contracts/tree/e22cc74c094985a97a4faf83844c8d51dfb6af12/src
https://github.com/NethermindEth/libre-platform-contracts/commit/e88db8da563a0acbe3bffa7af911714215759d4c
https://github.com/NethermindEth/libre-platform-contracts/blob/e88db8da563a0acbe3bffa7af911714215759d4c/src/SecurityToken.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/8e7816d5997aca5fbe0a30a961a369616f49d884
https://github.com/NethermindEth/libre-platform-contracts/blob/e88db8da563a0acbe3bffa7af911714215759d4c/src/SecurityToken.sol

NM-0099 - LIBRE - SECURITY REVIEW

6.33 [Best Practice] Unnecessary setting of IS_INSTRUMENT and FUND_ID in InstrumentRegistry

File(s): InstrumentRegistry.sol

Description: In the contract InstrumentRegistry, the process of setting up a new instrument is to call addInstrument(...) and then
initializeInstrument(...). In the function addInstrument, the IS_INSTRUMENT and FUND_ID storage keys are set for that particular
instrument ID. However, these storage keys are set to the same values again in the function initializeInstrument. This leads to two
unnecessary storage writes. Code snippets from the two functions are shown below:

1 function addInstrument(bytes32 _senderRole, bytes32 _instrumentId, bytes32 _fundId) external {
2 // ...
3 _setBool(_instrumentId, IS_INSTRUMENT, true);
4 _setBytes(_instrumentId, FUND_ID, _fundId);
5 // ...
6 }
7

8 function initializeInstrument(
9 ...

10) external {
11 // ...
12 _setBool(_instrumentId, IS_INSTRUMENT, true)
13 _setBytes(_instrumentId, FUND_ID, fundId);
14 // ...
15 }

Recommendation(s): Consider removing the unnecessary storage writes in initializeInstrument(...).

Status: Fixed

Update from the client: Fixed in e16cb92

6.34 [Best Practice] Unused storage variables
File(s): *.sol

Description: The presence of unused variables is generally considered a practice to be avoided, as they may lead to potential issues
such as unnecessary gas consumption and reduced code readability. The following is a list of variables that are unused in the protocol:

− In DealerRegistry the storage variable investorRegistry is set but not used;

− In SecurityToken the storage variable lifecycleContract is not used;

− In InstrumentRegistry the storage variables subscriptionBookImp and redemptionBookImp are not used;

Recommendation(s): Consider removing all unused variables from the codebase to enhance code quality and minimize the risk of errors
or inefficiencies.

Status: Fixed

Update from the client: Fixed in 62083e6

6.35 [Best Practice] Verify whether the transfer was successful and the token bal-
ance after transfer using order amount

File(s): SubscriptionBook.sol

Description: At the locking tokens phase the ERC20 token is transferred from the sender to the SubscriptionBook contract. In some
ERC20 tokens, if the transfer fails, it won’t revert instead returns false, or it won’t return anything like in USDT. In that case, an order is
locked without receiving the tokens.

1 function _afterLockOrderCheck(uint256 _orderId, Order memory _order, address _investorWallet, uint256 _submitter)
internal {↪

2 ...
3 paymentToken.transferFrom(sender, address(this), _order.amount);
4 // @audit-issue check the return value
5 // @audit-issue verify the token balance before and after the transfer using the order amount
6 ...
7 }

This applies in case the admin cancels an order. Payment tokens are sent to order beneficiary.

27

https://github.com/NethermindEth/libre-platform-contracts/blob/e88db8da563a0acbe3bffa7af911714215759d4c/src/registries/InstrumentRegistry.sol
https://github.com/NethermindEth/libre-platform-contracts/tree/e16cb92266636cf2777c0678e0f5d3b5817f40c1
https://github.com/NethermindEth/libre-platform-contracts/tree/e88db8da563a0acbe3bffa7af911714215759d4c/src/
https://github.com/NethermindEth/libre-platform-contracts/tree/62083e614774859074f3e164172d15e3cae8f5e9
https://github.com/NethermindEth/libre-platform-contracts/blob/e88db8da563a0acbe3bffa7af911714215759d4c/src/SubscriptionBook.sol

NM-0099 - LIBRE - SECURITY REVIEW

1 function _afterCancelOrderCheck(uint256 _orderId, Order memory _order, uint256 _submitter) internal {
2 ...
3 if (_order.confirmed) {
4 confirmedAmount -= _order.amount;
5 confirmedAmountPerInvestor[_order.investorId] -= _order.amount;
6

7 // If locked update the locked amount
8 if (!_order.available) {
9 amountLocked -= _order.amount;

10 paymentToken.transfer(_order.beneficiary, _order.amount);
11 // @audit-issue check the return value
12 // @audit-issue verify the token balance before and after the transfer using order amount
13 removeId(_orderId);
14 }
15 }
16 ...
17 }

Recommendation(s): Consider using SafeERC20 functionalities for transfer and transferFrom. Also, consider comparing the contract’s
token balances before and after it.

Status: Fixed

Update from the client: Fixed in 520d71c

6.36 [Best Practice] checkCorrectInvestor(...) could receive investorId instead of
_orderId

File(s): SubscriptionBook.sol

Description: The function investorConfirmOrder(...) calls checkCorrectInvestor(...) to ensure that the caller is one of the wallets of
the order owner. As a further step, in investorConfirmOrder(...), the order is loaded to the memory, as described in the code below.

1 function investorConfirmOrder(uint256 _orderId) public override {
2 // @audit The order could be loaded before calling
3 // checkCorrectInvestor(...) and passed investorId instead
4 checkCorrectInvestor(_orderId);
5 Order memory order = orders[_orderId];
6 }

In addition, checkCorrectInvestor(...) reads the investorId from the orders[_orderId].

1 function checkCorrectInvestor(uint256 _orderId) internal view {
2 if (orders[_orderId].investorId != investorRegistry.getIdFromWallet(msg.sender)) {
3 revert IOrderPipelineUnauthorized();
4 }
5 }

Recommendation(s): Consider loading the order to the memory before calling checkCorrectInvestor(...) and passing the investorId
as parameter.

Status: Fixed

Update from the client: Fixed in 7473acd

28

https://github.com/NethermindEth/libre-platform-contracts/tree/520d71c4608d616bae3561c16595343d43c6299b
https://github.com/NethermindEth/libre-platform-contracts/blob/e22cc74c094985a97a4faf83844c8d51dfb6af12/src/SubscriptionBook.sol#L92
https://github.com/NethermindEth/libre-platform-contracts/tree/7473acd3c3f6985f1f37598b3848e57324ec4ace

NM-0099 - LIBRE - SECURITY REVIEW

6.37 [Best Practice] updateInvestorLastOperationTimestamp(...) parameter can be
investorId

File(s): SubscriptionBook.sol RedemptionBook.sol

Description: The function _afterConfirmOrderCheck(...) passes the _orderId to updateInvestorLastOperationTimestamp(...), which
uses the parameter only to get investidorId from storage. However, investidorId is already loaded in memory. It could be used instead.

1 function updateInvestorLastOperationTimestamp(uint256 _orderId) internal {
2 // @audit the function caller has the `investorId`
3 investorRegistry.updateInvestorLastOperationTimestamp(
4 orders[_orderId].investorId, instrumentId, block.timestamp
5);
6 }

Recommendation(s): Consider passing _order.investorId instead since this information is already in memory.

Status: Fixed

Update from the client: Fixed in 7473acd

7 Documentation Evaluation
Software documentation refers to written or visual information describing software’s functionality, architecture, design, and implementation.
It provides a comprehensive overview of the software system and helps users, developers, and stakeholders understand how the software
works, how to use it, and how to maintain it. Software documentation can take different forms, such as user manuals, system manuals,
technical specifications, requirements documents, design documents, and code comments. Software documentation is critical in software
development, enabling effective communication between developers, testers, users, and other stakeholders. It helps to ensure that
everyone involved in the development process has a shared understanding of the software system and its functionality. Moreover, software
documentation can improve software maintenance by providing a clear and complete understanding of the software system, making
it easier for developers to maintain, modify, and update the software over time. Smart contracts can use various types of software
documentation. Some of the most common types include:

− Technical whitepaper: A technical whitepaper is a comprehensive document describing the smart contract’s design and technical
details. It includes information about the purpose of the contract, its architecture, its components, and how they interact with each
other;

− User manual: A user manual is a document that provides information about how to use the smart contract. It includes step-by-step
instructions on how to perform various tasks and explains the different features and functionalities of the contract;

− Code documentation: Code documentation is a document that provides details about the code of the smart contract. It includes
information about the functions, variables, and classes used in the code, as well as explanations of how they work;

− API documentation: API documentation is a document that provides information about the API (Application Programming Interface)
of the smart contract. It includes details about the methods, parameters, and responses that can be used to interact with the
contract;

− Testing documentation: Testing documentation is a document that provides information about how the smart contract was tested.
It includes details about the test cases that were used, the results of the tests, and any issues that were identified during testing;

− Audit documentation: Audit documentation includes reports, notes, and other materials related to the security audit of the smart
contract. This type of documentation is critical in ensuring that the smart contract is secure and free from vulnerabilities.

These types of documentation are essential for smart contract development and maintenance. They help ensure that the contract is
properly designed, implemented, and tested, and they provide a reference for developers who need to modify or maintain the contract in
the future.

The Libre team has provided extensive documentation on their Notion page, including an overview of the protocol and technical insights
into its components. A summary of these documents is shown below:

− System Overview
− Subscription Book
− Redemption Book
− Rules Engine
− Registries
− Modules

Each function is complemented by detailed NatSpec comments describing function behavior, inputs and outputs. Moreover, the team
conducted a comprehensive code walkthrough and maintained open communication to address any inquiries or concerns raised by the
Nethermind auditors.

29

https://github.com/NethermindEth/libre-platform-contracts/blob/e22cc74c094985a97a4faf83844c8d51dfb6af12/src/SubscriptionBook.sol#L113
https://github.com/NethermindEth/libre-platform-contracts/blob/e22cc74c094985a97a4faf83844c8d51dfb6af12/src/RedemptionBook.sol#L154
https://github.com/NethermindEth/libre-platform-contracts/tree/7473acd3c3f6985f1f37598b3848e57324ec4ace

NM-0099 - LIBRE - SECURITY REVIEW

8 Test Suite Evaluation

8.1 Tests Output
> forge test
Running 5 tests for test/MonotonicQueue.t.sol:MonotonicQueueTest
Test result: ok. 5 passed; 0 failed; finished in 5.05ms
Running 1 test for test/SecurityToken.t.sol:SecurityTokenTest
Test result: ok. 1 passed; 0 failed; finished in 4.70ms
Running 33 tests for test/Allowlist.t.sol:Allowlist
Test result: ok. 33 passed; 0 failed; finished in 23.73ms
Running 8 tests for test/RedemptionCancellationOrders.t.sol:RedemptionCancellationOrdersTest
Test result: ok. 8 passed; 0 failed; finished in 31.23ms
Running 9 tests for test/EternalRegistry.t.sol:BasicEternalRegistry
Test result: ok. 9 passed; 0 failed; finished in 110.30ms
Running 3 tests for test/Gate1Module.t.sol:Gate1ModuleTest
Test result: ok. 3 passed; 0 failed; finished in 126.86ms
Running 3 tests for test/DealerWhitelistedModule.t.sol:DealerWhitelistedModuleTest
Test result: ok. 3 passed; 0 failed; finished in 107.10ms
Running 3 tests for test/Gate3.t.sol:Gate3
Test result: ok. 3 passed; 0 failed; finished in 37.12ms
Running 4 tests for test/RedemptionEndModule.t.sol:RedemptionEndModuleTest
Test result: ok. 4 passed; 0 failed; finished in 188.26ms
Running 2 tests for test/NoticePeriodModule.t.sol:NoticePeriodModuleTest
Test result: ok. 2 passed; 0 failed; finished in 251.21ms
Running 2 tests for test/PhasesManagement.t.sol:PhasesManagementTest
Test result: ok. 2 passed; 0 failed; finished in 15.63ms
Running 2 tests for test/BidCutOffModuleModule.t.sol:BidCutOffModuleTest
Test result: ok. 2 passed; 0 failed; finished in 308.24ms
Running 4 tests for test/HaltModule.t.sol:HaltModuleTest
Test result: ok. 4 passed; 0 failed; finished in 140.57ms
Running 8 tests for test/HoldingsModule.t.sol:HoldingsModuleTest
Test result: ok. 8 passed; 0 failed; finished in 28.59ms
Running 3 tests for test/TotalInvestorsLimitModule.t.sol:TotalInvestorsLimitModuleTest
Test result: ok. 3 passed; 0 failed; finished in 42.45ms
Running 3 tests for test/ForcedRedemptionModule.t.sol:ForcedRedemptionModuleTest
Test result: ok. 3 passed; 0 failed; finished in 634.96ms
Running 2 tests for test/RedemptionTimeCutOff.t.sol:RedemptionTimeCutOffTest
Test result: ok. 2 passed; 0 failed; finished in 6.33ms
Running 2 tests for test/ResetQueueBetweenRounds.t.sol:ResetQueueBetweenRounds
Test result: ok. 2 passed; 0 failed; finished in 25.82ms
Running 3 tests for test/RolesRegistry.t.sol:RoleRegistryTest
Test result: ok. 3 passed; 0 failed; finished in 2.11ms
Running 3 tests for test/RoundAmountLimitModule.t.sol:RoundAmountLimitModuleTest
Test result: ok. 3 passed; 0 failed; finished in 44.24ms
Running 2 tests for test/VolumeLimitModule.t.sol:VolumeLimitModuleTest
Test result: ok. 2 passed; 0 failed; finished in 255.81ms
Running 9 tests for test/SubscriptionCancellationOrders.t.sol:SubscriptionCancellationOrdersTest
Test result: ok. 9 passed; 0 failed; finished in 16.64ms
Running 26 tests for test/AllowlistModuleExample1.t.sol:AllowlistModuleExample1
Test result: ok. 26 passed; 0 failed; finished in 1.06s
Running 2 tests for test/WhitelistedInvestorModule.t.sol:WhitelistedInvestorModuleTest
Test result: ok. 2 passed; 0 failed; finished in 79.12ms
Running 4 tests for test/SubscriptionEndModule.t.sol:SubscriptionEndModuleTest
Test result: ok. 4 passed; 0 failed; finished in 230.62ms
Running 7 tests for test/BidAggregationLimitModule.t.sol:BidsAggregationLimitModuleTest
Test result: ok. 7 passed; 0 failed; finished in 1.22s
Running 15 tests for test/SubscriptionBook.t.sol:SubscriptionBookTests
Test result: ok. 15 passed; 0 failed; finished in 2.07s
Running 13 tests for test/RedemptionBook.t.sol:RedemptionBookTests
Test result: ok. 13 passed; 0 failed; finished in 1.82s
Running 8 tests for test/RedemptionFees.t.sol:RedemptionFeesTest
Test result: ok. 8 passed; 0 failed; finished in 2.54s
Running 5 tests for test/WalletsManagement.t.sol:WalletManagementTest
Test result: ok. 5 passed; 0 failed; finished in 2.34s

30

NM-0099 - LIBRE - SECURITY REVIEW

8.2 Code Coverage
The relevant output is presented below. Please note that the low code coverage for src/lib may be due to an issue with Foundry where
internal libraries are not accurately tracked (See here). Additionally, the coverage for the code executed within the function setUp(...)
might not be tracked due to another issue with Foundry (See here).

File	% Lines	% funcs
src/DealerRulesEngine.sol	37.31% (25/67)	43.48% (10/23)
src/EternalRegistryStorage.sol	15.58% (12/77)	42.86% (9/21)
src/IdSorter.sol	63.08% (41/65)	40.00% (2/5)
src/Lifecycle.sol	0.00% (0/3)	0.00% (0/1)
src/OperationModule.sol	0.00% (0/4)	0.00% (0/1)
src/OrderBook.sol	0.00% (0/47)	0.00% (0/7)
src/PermissionedContract.sol	100.00% (3/3)	100.00% (2/2)
src/RedemptionBook.sol	88.44% (306/346)	95.12% (39/41)
src/RulesEngine.sol	52.17% (48/92)	72.22% (26/36)
src/SecurityToken.sol	75.56% (34/45)	75.00% (6/8)
src/SubscriptionBook.sol	90.78% (187/206)	92.31% (36/39)
src/lib/BitMask.sol	0.00% (0/7)	0.00% (0/6)
src/lib/MonotonicQueue.sol	0.00% (0/54)	0.00% (0/8)
src/lib/TimeOperations.sol	0.00% (0/53)	0.00% (0/3)
src/modules/allowlist/AllowlistModuleDealerExample1.sol	38.60% (22/57)	71.43% (5/7)
src/modules/allowlist/AllowlistModuleDealerExampleTesting.sol	100.00% (17/17)	100.00% (8/8)
src/modules/allowlist/AllowlistModuleInstrumentExample1.sol	61.90% (13/21)	60.00% (3/5)
src/modules/allowlist/AllowlistModuleInstrumentExampleTesting.sol	100.00% (17/17)	100.00% (8/8)
src/modules/allowlist/AllowlistModuleLibreExample1.sol	80.00% (40/50)	60.00% (3/5)
src/modules/allowlist/AllowlistModuleLibreExampleTesting.sol	94.12% (16/17)	87.50% (7/8)
src/modules/general/HaltModule.sol	54.17% (26/48)	91.67% (22/24)
src/modules/general/HoldingsModule.sol	87.01% (67/77)	86.67% (13/15)
src/modules/redemptions/ForcedRedemptionModule.sol	70.59% (12/17)	66.67% (2/3)
src/modules/redemptions/Gate1Module.sol	63.64% (7/11)	66.67% (2/3)
src/modules/redemptions/NoticePeriodModule.sol	63.64% (7/11)	66.67% (2/3)
src/modules/redemptions/RedemptionEndModule.sol	37.50% (6/16)	75.00% (6/8)
src/modules/redemptions/VolumeLimitModule.sol	66.67% (8/12)	66.67% (2/3)
src/modules/subscriptions/BidCutOffModule.sol	54.55% (6/11)	80.00% (4/5)
src/modules/subscriptions/BidsAggregationLimitModule.sol	81.82% (27/33)	83.33% (5/6)
src/modules/subscriptions/DealerWhitelistedModule.sol	38.46% (5/13)	80.00% (4/5)
src/modules/subscriptions/RoundAmountLimitModule.sol	14.29% (1/7)	50.00% (2/4)
src/modules/subscriptions/SubscriptionEndModule.sol	44.44% (8/18)	80.00% (8/10)
src/modules/subscriptions/SubscriptionSizeModule.sol	0.00% (0/47)	0.00% (0/10)
src/modules/subscriptions/TotalInvestorsLimitModule.sol	0.00% (0/7)	0.00% (0/4)
src/modules/transfers/WhitelistedInvestorModule.sol	45.45% (5/11)	66.67% (2/3)
src/registries/BaseRegistry.sol	32.14% (18/56)	43.48% (10/23)
src/registries/BaseUserRegistry.sol	96.15% (25/26)	80.00% (4/5)
src/registries/DealerRegistry.sol	78.57% (11/14)	75.00% (3/4)
src/registries/FundRegistry.sol	0.00% (0/7)	0.00% (0/2)
src/registries/InstrumentRegistry.sol	24.24% (24/99)	38.46% (5/13)
src/registries/InvestorRegistry.sol	86.67% (91/105)	73.68% (14/19)
src/registries/JurisdictionRegistry.sol	33.33% (2/6)	40.00% (2/5)
src/registries/RoleRegistry.sol	100.00% (15/15)	100.00% (6/6)
Total	60.16% (1152/1915)	66.35% (282/425)

8.3 Slither
All the relevant issues raised by Slither have been incorporated into the issues described in this report.

31

https://github.com/foundry-rs/foundry/issues/4854
https://github.com/foundry-rs/foundry/issues/4553

NM-0099 - LIBRE - SECURITY REVIEW

9 About Nethermind
Nethermind is a Blockchain Research and Software Engineering company. Our work touches every part of the web3 ecosystem - from
layer 1 and layer 2 engineering, cryptography research, and security to application-layer protocol development. We offer strategic support
to our institutional and enterprise partners across the blockchain, digital assets, and DeFi sectors, guiding them through all stages of the
research and development process, from initial concepts to successful implementation.

We offer security audits of projects built on EVM-compatible chains and Starknet. We are active builders of the Starknet ecosystem,
delivering a node implementation, a block explorer, a Solidity-to-Cairo transpiler, and formal verification tooling. Nethermind also provides
strategic support to our institutional and enterprise partners in blockchain, digital assets, and decentralized finance (DeFi). In the next
paragraphs, we introduce the company in more detail.

Blockchain Security: At Nethermind, we believe security is vital to the health and longevity of the entire Web3 ecosystem. We pro-
vide security services related to Smart Contract Audits, Formal Verification, and Real-Time Monitoring. Our Security Team comprises
blockchain security experts in each field, often collaborating to produce comprehensive and robust security solutions. The team has a
strong academic background, can apply state-of-the-art techniques, and is experienced in analyzing cutting-edge Solidity and Cairo smart
contracts, such as ArgentX and StarkGate (the bridge connecting Ethereum and StarkNet). Most team members hold a Ph.D. degree and
actively participate in the research community, accounting for 240+ articles published and 1,450+ citations in Google Scholar. The security
team adopts customer-oriented and interactive processes where clients are involved in all stages of the work.

Blockchain Core Development: Our core engineering team, consisting of over 20 developers, maintains, improves, and upgrades our
flagship product - the Nethermind Ethereum Execution Client. The client has been successfully operating for several years, supporting both
the Ethereum Mainnet and its testnets, and now accounts for nearly a quarter of all synced Mainnet nodes. Our unwavering commitment
to Ethereum’s growth and stability extends to sidechains and layer 2 solutions. Notably, we were the sole execution layer client to facilitate
Gnosis Chain’s Merge, transitioning from Aura to Proof of Stake (PoS), and we are actively developing a full-node client to bolster Starknet’s
decentralization efforts. Our core team equips partners with tools for seamless node set-up, using generated docker-compose scripts
tailored to their chosen execution client and preferred configurations for various network types.

DevOps and Infrastructure Management: Our infrastructure team ensures our partners’ systems operate securely, reliably, and effi-
ciently. We provide infrastructure design, deployment, monitoring, maintenance, and troubleshooting support, allowing you to focus on
your core business operations. Boasting extensive expertise in Blockchain as a Service, private blockchain implementations, and node
management, our infrastructure and DevOps engineers are proficient with major cloud solution providers and can host applications in-
house or on clients’ premises. Our global in-house SRE teams offer 24/7 monitoring and alerts for both infrastructure and application
levels. We manage over 5,000 public and private validators and maintain nodes on major public blockchains such as Polygon, Gnosis,
Solana, Cosmos, Near, Avalanche, Polkadot, Aptos, and StarkWare L2. Sedge is an open-source tool developed by our infrastructure
experts, designed to simplify the complex process of setting up a proof-of-stake (PoS) network or chain validator. Sedge generates docker-
compose scripts for the entire validator set-up based on the chosen client, making the process easier and quicker while following best
practices to avoid downtime and being slashed.

Cryptography Research: At Nethermind, our Cryptography Research team is dedicated to continuous internal research while fostering
close collaboration with external partners. The team has expertise across a wide range of domains, including cryptography protocols,
consensus design, decentralized identity, verifiable credentials, Sybil resistance, oracles, and credentials, distributed validator technology
(DVT), and Zero-knowledge proofs. This diverse skill set, combined with strong collaboration between our engineering teams, enables us
to deliver cutting-edge solutions to our partners and clients.

Smart Contract Development & DeFi Research: Our smart contract development and DeFi research team comprises 40+ world-class
engineers who collaborate closely with partners to identify needs and work on value-adding projects. The team specializes in Solidity
and Cairo development, architecture design, and DeFi solutions, including DEXs, AMMs, structured products, derivatives, and money
market protocols, as well as ERC20, 721, and 1155 token design. Our research and data analytics focuses on three key areas: technical
due diligence, market research, and DeFi research. Utilizing a data-driven approach, we offer in-depth insights and outlooks on various
industry themes.

Our suite of L2 tooling: Warp is Starknet’s approach to EVM compatibility. It allows developers to take their Solidity smart contracts
and transpile them to Cairo, Starknet’s smart contract language. In the short time since its inception, the project has accomplished many
achievements, including successfully transpiling Uniswap v3 onto Starknet using Warp.

− Voyager is a user-friendly Starknet block explorer that offers comprehensive insights into the Starknet network. With its intuitive
interface and powerful features, Voyager allows users to easily search for and examine transactions, addresses, and contract
details. As an essential tool for navigating the Starknet ecosystem, Voyager is the go-to solution for users seeking in-depth
information and analysis;

− Horus is an open-source formal verification tool for StarkNet smart contracts. It simplifies the process of formally verifying Starknet
smart contracts, allowing developers to express various assertions about the behavior of their code using a simple assertion
language;

− Juno is a full-node client implementation for Starknet, drawing on the expertise gained from developing the Nethermind Client.
Written in Golang and open-sourced from the outset, Juno verifies the validity of the data received from Starknet by comparing it to
proofs retrieved from Ethereum, thus maintaining the integrity and security of the entire ecosystem.

Learn more about us at nethermind.io.

32

nethermind.io

NM-0099 - LIBRE - SECURITY REVIEW

Disclaimer

This report is based on the scope of materials and documentation provided by you to Nethermind in order that Nethermind could conduct
the security review outlined in 1. Executive Summary and 2. Audited Files. The results set out in this report may not be complete nor
inclusive of all vulnerabilities. Nethermind has provided the review and this report on an as-is, where-is, and as-available basis. You agree
that your access and/or use, including but not limited to any associated services, products, protocols, platforms, content, and materials,
will be at your sole risk. Blockchain technology remains under development and is subject to unknown risks and flaws. The review does
not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that could present
security risks. This report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party
should rely on this report in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset.
To the fullest extent permitted by law, Nethermind disclaims any liability in connection with this report, its content, and any related services
and products and your use thereof, including, without limitation, the implied warranties of merchantability, fitness for a particular purpose,
and non-infringement. Nethermind does not warrant, endorse, guarantee, or assume responsibility for any product or service advertised
or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,
called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites,
any websites or mobile applications appearing on any advertising, and Nethermind will not be a party to or in any way be responsible for
monitoring any transaction between you and any third-party providers of products or services. As with the purchase or use of a product
or service through any medium or in any environment, you should use your best judgment and exercise caution where appropriate.
FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED
SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX,
LEGAL, REGULATORY, OR OTHER ADVICE.

33

https://nethermind.io
https://nethermind.io
https://nethermind.io
https://nethermind.io
https://nethermind.io
https://nethermind.io

	Executive Summary
	Audited Files
	Summary of Issues
	System Overview
	Risk Rating Methodology
	Issues
	[Critical] USDC is permanently locked in the SubscriptionBook
	[Critical] _instantSettlement(...) does not implement fee deduction
	[High] Admin cancellation of an order may lead to an insufficient security token balance in the RedemptionBook
	[High] Admin cancellation of the first order in the queue will lead to failure of settling orders
	[High] Missing zero check for investorId could be abused to drain tokens
	[High] order.amountPaid is updated with the amount sent to the treasury instead of beneficiary
	[Medium] Enabling a module without resetting the registries leads to incorrect behavior of static checks
	[Medium] Investors and dealers can add any wallet even if it does not belong to them
	[Medium] Investors are unable to redeem the entire amount
	[Medium] Last operation timestamp in InvestorRegistry can be overridden
	[Medium] The function settleOrders(...) never marks order as done
	[Medium] The last item is never checked due to an incorrect implementation of the function getValueAfterTimestamp(...)
	[Medium] investorBalance[] is not updated when investors add or remove a wallet
	[Medium] The function rebalanceSettlements(...) lacks global state update like the function _partialSettlement(...)
	[Medium] settledAmount is never reset in _instantSettlement(...)
	[Low] Functions initialize(...) can be frontrun
	[Low] Incorrect definition of INITIAL_RESTRICTED_PERIOD_ALLOWANCE constant variable
	[Low] Malicious contract manager can continue to pass hasAccess after manager role is changed
	[Info] Duplicate elements in operationModules[] could cause deleteModule(...) to work incorrectly
	[Info] Redundant loop check in the function _editModuleClone(...)
	[Info] Registering the same module again will not produce the desired outcome
	[Info] The total storage variable in IdSorter can be manipulated
	[Info] Typo in string used to derive storage key
	[Info] insertId(...) fails to insert an element equal to the end
	[Best Practice] Duplicated logic between the HoldingsModule and the BidsAggregationLimitModule
	[Best Practice] Emitting address instead of index of the wallet
	[Best Practice] Improve efficiency of insertId(...) by utilizing a hint for faster position finding
	[Best Practice] Including zero check for denominator when performing division
	[Best Practice] Missing event emission
	[Best Practice] Prevent initialization of implementation contracts
	[Best Practice] Redundant investorBalance getter in SecurityToken contract
	[Best Practice] Unnecessary parent before and after token transfer function call
	[Best Practice] Unnecessary setting of IS_INSTRUMENT and FUND_ID in InstrumentRegistry
	[Best Practice] Unused storage variables
	[Best Practice] Verify whether the transfer was successful and the token balance after transfer using order amount
	[Best Practice] checkCorrectInvestor(...) could receive investorId instead of _orderId
	[Best Practice] updateInvestorLastOperationTimestamp(...) parameter can be investorId

	Documentation Evaluation
	Test Suite Evaluation
	Tests Output
	Code Coverage
	Slither

	About Nethermind

